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Abstract. Expressive interpretation forms an important but complex
aspect of music, in particular in certain forms of classical music. Mod-
eling the relation between musical expression and structural aspects of
the score being performed, is an ongoing line of research. Prior work has
shown that some simple numerical descriptors of the score (capturing
dynamics annotations and pitch) are effective for predicting expressive
dynamics in classical piano performances. Nevertheless, the features have
only been tested in a very simple linear regression model. In this work,
we explore the potential of a non-linear model for predicting expressive
dynamics. Using a set of descriptors that capture different types of struc-
ture in the musical score, we compare the predictive accuracies of linear
and non-linear models. We show that, in addition to being (slightly) more
accurate, non-linear models can better describe certain interactions be-
tween numerical descriptors than linear models.

Keywords: Musical expression, Non-linear Basis Models, Artificial Neu-
ral Networks, Computational models of music performance

1 Introduction

Performances of written music by humans are hardly ever precise acoustical
renderings of the notes in the score, as a computer would produce —nor are
they expected to be. A natural human performance involves an interpretation
of the music, in terms of structure, but also in terms of affective content [5,
22], which is conveyed to the listener by local variations in tempo and loudness,
and (depending on the expressive possibilities of the instrument) the timing,
articulation, and timbre of individual notes.

Musical expression is a complex phenomenon. Becoming an expert musician
takes many years of training and practice, and rather than adhering to explicit
rules, achieved performance skills are to a large degree the effect of implicit,
procedural knowledge. That is not to say that regularities cannot be found in
the way musicians perform music. Decades of empirical research have identified a
number of factors that jointly determine the way a musical piece is rendered [21,
11]. For example, aspects such as phrasing [29], meter [25], but also intended
emotions [20], all have an effect on expressive variations in music performances.
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A better understanding of musical expression is not only desirable in its own
right. The potential role of computers in music creation will also depend on
accurate computational models of musical expression. For example, music soft-
ware such as MIDI sequencers and music notation editors may benefit from such
models in that they enable automatic or semi-automatic expressive renderings
of musical scores.

Several methodologies have been used to study musical expression. Com-
plementary to controlled experiments that investigate a single aspect of perfor-
mance, data mining and machine learning paradigms set out to discover regular-
ities in musical expression using data sets comprising musical performances [31,
23]. Given the implicit nature of expressive performance skills, the benefit of
the latter approach is that it may reveal patterns that have gone as of yet un-
noticed, because perhaps they do not relate in any obvious ways to existing
scholarly knowledge about expressive performance.

A computational framework has been proposed in [13], to model the effect of
structural aspects of a musical score on expressive performances of that score,
in particular expressive dynamics (the relative intensity with which the notes
are performed). This framework, referred to as the Linear Basis Model (LBM),
follows the machine learning paradigm in that it estimates the parameters of a
model from a set of recorded music performances, for which expressive parame-
ters such as local loudness, tempo, or articulation, can be measured or computed.

An important characteristic of the LBM is its use of basis functions as a way
to describe structural properties of a musical score, ranging from the metrical
position of the notes, to the presence and scope of certain performance directives.
For instance, a basis function for the performance directive forte (f ), may assign
a value of 1 to notes that lie within the scope of the directive, and 0 to notes
outside the scope. Another basis function may assign a value of 1 to all notes that
fall on the first beat of a measure, and 0 to all other notes. But basis functions
are not restricted to act as indicator functions; They can be any function that
maps notes in a score to real values. For example, a useful basis function proves
to be the function that maps notes to (powers of) their MIDI pitch values. Given
a set of such basis functions, each representing a different aspect of the score,
the intensity of notes in an expressive performance is modeled simply as a linear
combination of the basis functions. The resulting model has been used for both
predictive and analytical purposes [13, 15].

The original formulation of the LBM used a least squares (LS) regression to
compute the optimal model parameters. A probabilistic LBM using the Bayesian
linear regression assuming zero mean Gaussian priors with isotropic covariance
was presented in [15], and then expanded to Gaussian priors with arbitrary mean
and covariance in [4].

Although the linear model produces surprisingly good results given its sim-
plicity, a question that has not been answered until now is whether the same
basis function framework can benefit from a more powerful, non-linear model. It
is conceivable that interactions of score properties produce an effect on perfor-
mance, rather than each of the properties in isolation. Moreover, it may be that
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certain properties covary with musical expression, but not in a linear fashion.
Therefore, in this paper, we propose a Non-Linear Basis Model (NLBM), that
enables non-linear combinations of basis functions through the use of supervised
Feedforward Neural Networks (FFNN). These models have been successful in
a variety of tasks, ranging from handwritten digit recognition to robot control.
FFNNs are powerful models for learning non-linear transformations: with enough
hidden units they can represent arbitrarily complex but smooth functions.

Thus, the purpose of this paper is to investigate whether the basis-function
modeling approach to expressive dynamics benefits from non-linear connections
between the basis-functions and the targets to be modeled. To this end, we run
a comparison of the LBM and the NLBM approaches on a data set of profes-
sional concert performances of Chopin’s piano works. Apart from the predictive
accuracy of both models, we present a (preliminary) qualitative interpretation
of the results, by way of a sensitivity analysis of the models.

The outline of this paper is as follows: In Section 2, we discuss prior work
on computational models of musical expression. In Section 3, the basis-function
modeling approach for musical expression is presented in some more detail. A
mathematical formulation of the presented non-linear model is provided in Sec-
tion 4. In Section 5, we describe the experimental comparison mentioned above.
The results of this experimentation are presented and discussed in Section 6.
Conclusions are presented in Section 7.

2 Related Work

Musical performance represents an ongoing research subject that involves a wide
diversity of scientific and artistic disciplines. On the one hand, there is an interest
in understanding the cognitive principles that determine the way a musical piece
is performed [5, 22] such as the effects of musical imagery in the anticipation and
monitoring of the performance of musical dynamics [2]. On the other hand, com-
putational models of expressive music performance attempt to investigate the
relationships between certain properties of the musical score and performance
context with the actual performance of the score [32]. These models can serve
mainly analytical purposes [30, 33], by showing the relation between structural
properties of the music and its effect in the performance of such music, mainly
predictive purposes [28], i.e. the models are used to render expressive perfor-
mances, or both [17, 7, 13]. Computational models of music performance tend to
follow two basic paradigms: rule based approaches, where the models are defined
through music-theoretically informed rules that intend to map structural as-
pects of a music score to quantitative parameters that describe the performance
of a musical piece, and data-driven (or machine learning) approaches, where the
models try to infer the rules of performance from analyzing patterns obtained
from (large) datasets of observed (expert) perfomances [31, 14].

One of the most well-known rule-based systems for musical music perfor-
mance was developed at the Royal Institute of Technology in Stockholm (referred
to as the KTH model) [10]. This system is top-down approach that describes
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expressive performances using a set of (music theoretically sound/cognitively
plausible) performance rules that predict aspects of timing, dynamics and artic-
ulation, based on a local musical context. On the other hand, the model proposed
in this paper represents a bottom-up approach that uses a lower level encoding
of a musical score in order to learn how different aspects of the score contribute
to generate an expressive performance of a musical piece.

Among the machine learning methods for musical expression is the model
proposed by Bresin [3]. This model uses artificial neural networks (NNs) in a
supervised fashion in two different contexts: 1) to learn and predict the rules
proposed by the KTH model and 2) to learn the performing style of a professional
pianist using an encoding of the KTH rules as inputs. As in the case of the KTH
model, the NLBM proposed in this paper uses a lower level representation of
the score, and makes less assumptions on how the different score descriptors
contribute to the expressive dynamics.

On the other hand, Van Herwaarden et al. [18] present an unsupervised ap-
proach to modeling musical dynamics using restricted Boltzmann machines. This
approach uses a piano roll representation of musical scores to explain the musical
dynamics of performed piano music. In order to to predict expressive dynamics
of a score, the features learned by this model are trained in a supervised fashion
using LS regression. The choice of a note-centered representation of a musical
score makes this system able to model harmonic context based on relative pitch,
but insensitive to absolute pitch. Furthermore, this encoding of a score does
not include performance directives written by the composer, such as dynamics
or articulation markings (such as piano, staccato, etc). Both the KTH system
and previous work on LBMs have shown that the encoding of pitch and dynam-
ics/articulation markings plays an important role in the rendering of expressive
performances.

A broader overview of computational models of expressive music performance
can be found in [32, 14].

3 The Basis-Function Model of Expressive Dynamics

In this section, we describe the basis-function modeling (BM) approach, inde-
pendent of the linear/non-linear nature of the connections to the expressive
parameters. We consider a musical score a sequence of elements [13]. These el-
ements include note elements (e.g. pitch, duration) and non-note elements (e.g.
dynamics and articulation markings). The set of all note elements in a score is
denoted by X . Musical scores can be described in terms of basis functions, i.e.
numeric descriptors that represent aspects of the score. Formally, we can define
a basis function φ as a real valued mapping φ : X 7→ R. In a similar way, musical
expression is characterized in a quantitative way by a number of expressive pa-
rameters. In particular, expressive dynamics is conveyed by the MIDI velocities
of the performed notes. Further expressive parameters capture aspects of note
timing and local tempo (e.g. inter-onset intervals between consecutive notes),
and articulation (the proportion of the duration of a note with respect to its
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inter-onset interval). Although the basis-function approach can be applied with-
out any alteration to model all of these expressive parameters, the focus in this
study will be on expressive dynamics. By defining basis functions as functions of
notes, instead of functions of time, the BM framework allows for modeling forms
of music expression related to simultaneity of musical events, like the micro-
timing deviations of note onsets in a chord, or the melody lead [12], i.e. the
accentuation of the melody voice with respect to the accompanying voices by
playing it louder and slightly earlier.

The BM framework relies on the simplifying assumption that given all score
information, the expressive parameters for each note are independent from those
of other notes. This assumption implies that temporal dependencies within pa-
rameters are not explicitly modeled. One advantage of non-linear models over
previous work is that this framework allows for modeling of mutual dependencies
between expressive parameters.

Figure 1 illustrates the idea of modeling expressive dynamics using basis
functions schematically. Although basis functions can be used to represent arbi-
trary properties of the musical score (see Section 3.1), the BM framework was
proposed with the specific aim of modeling the effect of dynamics markings.
Such markings are hints in the musical score, to play a passage with a particular
dynamical character. For example, a p (for piano) tells the performer to play a
particular passage softly, whereas a passage marked f (for forte) should be per-
formed loudly. Such markings, which specify a constant loudness that lasts until
another such directive occurs, are modeled using a step-like function, as shown
in the figure. A gradual increase/decrease of loudness (crescendo/diminuendo) is
indicated by right/left-oriented wedges, respectively. Such markings are encoded
by ramp-like functions. A third class of dynamics markings, such as marcato
(i.e. the “hat” sign over a note), or textual markings like sforzato (sfz ), or forte
piano (fp), indicate the accentuation that note (or chord). This class of mark-
ings is is represented through (translated) unit impulse functions. In the BM
approach, the expressive dynamics (i.e. the MIDI velocities of performed notes)
are modeled as a combination of the basis functions, as displayed in the figure.

3.1 Groups of basis functions

As stated above, the BM approach encodes a musical score into a set of numeric
descriptors. In the following, we describe various groups of basis functions, each
group representing a different aspect of the score. This list should by no means
be taken as an exhaustive (or accurate) set of features for modeling musical
expression. It is a tentative list that encodes basic information, either directly
available, or easily computable from a symbolic representation of the musical
piece (such as MusicXML).

I Dynamics markings. Bases that encode dynamics markings, such as shown
in figure 1. For each of the constant loudness markings (p, pp, f etc.), two
additional ramp-function are included that allows for a gradual change to-
wards the loudness level indicated by the marking. Such bases are referred
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Fig. 1. Schematic view of expressive dynamics as a function f(x,w) of basis functions
φ, representing dynamic annotations

to as anticipation functions, and we distinguish between long and short an-
ticipations, according to how gradual is the change towards the target dy-
namics marking. Additionally, basis functions that describe gradual changes
in loudness, such as crescendo and diminuendo, are represented through a
combination of a ramp function, followed by a constant (step) function,
that continues until a new constant dynamics marking (e.g. f) appears, as
illustrated by φ2 in Figure 1.

II Polynomial pitch model. Grachten et al. [13] proposed a third order
polynomial model to describe the dependency of dynamics on pitch. This
model can be integrated in the BM approach by defining each term in the
polynomial as a separate basis function, i.e. “pitch“, “pitch2”, and “pitch3”.

III Vertical neighbors. Two basis functions that evaluate to the number of
simultaneous notes with lower and higher pitches, respectively.

IV IOI. The inter-onset-interval (IOI) is the time between the onsets successive
notes; For note i, three basis functions encode the IOIs between (i, i − 1),
(i− 1, i− 2), and (i− 2, i− 3), respectively.

V Ritardando. Encoding of markings that indicate gradual changes in the
tempo of the music; Includes functions for rallentando, ritardando, accelerando.

VI Slur. Description of legato articulations, which indicate that musical notes
are performed smoothly and connected, i.e. without silence between each
note. The encoding of this bases functions is through parabolic functions
that act locally where such a slur is present on the score.

VII Duration. A basis function that encodes the duration of a note.

VIII Rest. Indicates whether notes precede a rest.

IX Metrical. Representation of the time signature of a piece, and the position
of each note in the bar. For example, the basis function labeled 4/4 beat
0 evaluates to 1 for all notes that start on the first beat in a 4/4 time
signature, and to 0 otherwise.
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Fig. 2. The architecture of the used NLBM for modeling expressive dynamics

X Repeat. Takes into account repeat and ending bars, i.e. explicit markings
of that indicate the structure of a piece by indicating the end of a particular
section (which can be repeated), or the ending of a piece.

XI Accent. Accents of individual notes or chords, such as the marcato in fig-
ure 1.

XII Staccato. Encodes staccato markings on a note, an articulation indicating
that a note should be temporally isolated from its successor, by shortening
its duration

XIII Grace notes. Encoding of musical ornaments that are melodically and or
harmonically nonessential, but have an embellishment purpose.

XIV Fermata. A basis function that encodes markings that indicate that a note
should be prolonged beyond its normal duration.

4 Non-Linear Basis Model

In this section we provide a mathematical formulation of the Non-Linear Basis
Model (NLBM) model for modeling expressive dynamics. Let x = (x1, . . . , xN )T ∈
RN be a vector representing a set of N notes in a musical score and y =
(y1, . . . , yN )T ∈ RN be a vector representing of an expressive parameter for each
note. In this paper, we focus on expressive dynamics, but this framework can be
used for other parameters. Let φ(xi) = (φ1(xi), . . . , φM (xi))

T ∈ RM be a vector
whose elements are the values of the basis functions for note xi. The influence of
these basis functions in the expressive parameter can be modeled in a non-linear
way using the framework of Feed Forward Neural Networks (FFNNs). These
neural networks can be described as a series of functional transformations [1],
i.e. a series of non-linear activations of linear combinations of the inputs. Using
this formalism, we can write the parameter y as the output of a fully-connected
FFNN with L hidden layers as

y(xi,w) = f (L)

DL∑
j=1

w
(L)
j h

(L−1)
j (xi) + w

(L)
0

 , (1)
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where h(l)(xi) ∈ RDl is the activation of the l-th hidden layer, whose k-th
component is given by

h
(l)
k (xi) = f (l)

 Dl∑
j=1

w
(l)
kj h

(l−1)
j (xi) + w

(l)
k0

 , (2)

and activation of the first hidden layer is then given as a function of the basis
functions as

h
(1)
k (xi) = f (1)

 M∑
j=1

w
(1)
kj φj(xi) + w

(1)
k0

 . (3)

The set of all parameters is denoted by w, where w(l) = {w(l)
0 , w1, . . . , w

(l)
Dl
}

are the parameters of the l-th hidden layer1, and f (l) represent the activation
function of the l-th layer. Common (non-linear) activation functions are sigmoid,
hyperbolic tangent, softmax and rectifier (ReLU(x) = max(0, x)). Since we are
using the FFNN in a regression scenario, the activation function of the last
hidden layer is set to the identity function, i.e. f(x) = x [1]. Figure 2 shows the
scheme of an FFNN with one hidden layer.

Given a set of training data consisting of input x and target data t, the model
parameters can be estimated in a supervised way by minimizing a loss function,
as

ŵ = argmin
w

L(y(x,w), t). (4)

A usual loss function for supervised regression problems is the mean squared
error (MSE), i.e.

LMSE(y, t) =
1

N

∑
i

(yi(x,w)− ti)
2. (5)

As previously stated, the NLBM is able to model mutual dependencies be-
tween the basis functions. The output of the model can be written as a linear
combination of the last hidden layer, i.e.

y(hL,w(l)) =

DL∑
j=1

w
(L)
j h

(L−1)
j + w

(L)
0 = w(L)T h̃(L−1), (6)

where h̃(L−1) =
(
1, h

(L−1)
1 , . . . , h

(L−1)
DL

)T

. Since h̃(L−1) is a non-linear activation

of linear combinations of the input units, it can model the dependencies and
interactions of the basis functions. Therefore, we can understand the training
of the NLBM as finding Least Squares solution of a non-linear encoding of the
input basis functions.

1 In the machine learning literature {w1, . . . , w
(l)
Dl

} and w
(l)
0 are respectively referred

to as the set of weights and the bias of the l-th layer.
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5 Experiments

To determine to what degree the model is able to account for expressive dynam-
ics, encoded as MIDI velocities of performed notes (see Section 5.1), the accuracy
of the predictions of the trained model was tested using a 10-fold cross validation.
We report several measures to characterize the accuracy of the learned models.
Firstly, we report MSE, the mean squared error of the predictions, which is the
most direct measure of how close the model predictions are to their targets. Sec-
ondly the Pearson correlation coefficient (r), expresses how strongly predictions
and target are correlated. Lastly, the coefficient of determination R2, expresses
the proportion of variance explained by the model.

5.1 Data Set

The Magaloff corpus [9] consists of the complete Chopin piano solo works per-
formed by the renown Russian-Georgian pianist Nikita Magaloff (1912-1992)
during a series of concerts in Vienna, Austria in 1989. These performances were
recorded using a Bösendorfer SE computer-controlled grand piano, and then
converted into standard MIDI format. These performances have been aligned to
their corresponding musical scores. One of the unique properties of this corpus
is that the hammer velocities of each performed note have been recorded in a
precise way, and converted to MIDI velocities. This dataset comprises more than
150 pieces and over 300,000 performed notes, adding up to almost 10 hours of
music.

5.2 Model training

We trained several NLBM models with different configurations. Of the training
data in each fold, 70% was used for updating the parameters, and 30% was used
as validation set. The model was trained using RMSProp [6]. This method is
a mini batch variant of stochastic gradient descent that adaptively updates the
learning rate by dividing the gradient by an average of its recent magnitude. In
order to avoid overfitting, dropout and early stopping were used. Dropout pre-
vents overfitting and provides a way of approximately combining different neural
networks efficiently by randomly removing units in the network, along with all its
incoming and outgoing connections. These methods have been effectively used
to improve the results in several applications including image processing [26, 19].

The number of hidden units, activation function of the hidden layers and the
hyper-parameters (learning rate, batch size and probability of dropout pdropout)
were empirically selected using a grid search. The results presented below are
those of the the best model on the test set. This network has one hidden layer
model with 100 ReLU hidden units, and a linear output layer with a single unit,
pdropout = 0.5, a learning rate of 0.0001 a batch size of 16000 and was trained
for an average of 1037 epochs. It is interesting to notice that with the current
training methods, the accuracy of the model was not benefitted by the addition
of more hidden layers.



10 Carlos Eduardo Cancino Chacón and Maarten Grachten

Model MSE r R2

LBM 0.780 0.472 0.223
LBM (Bayesian) 0.774 0.475 0.226
LBM (best regularized) 0.771 0.477 0.228
NLBM 0.757 0.492 0.242

Table 1. Predictive results for MIDI Velocity, averaged over a 10-fold cross-validation
on the Magaloff piano performance corpus. A smaller value of MSE is better, while
larger r and R2 means better performance.

The LBM models were trained using the original LS solution, a regularized
LS that imposes a constraint in the l2 norm on the model parameters [1] and
the Bayesian LBM reported in [15]. The damping coefficient for the regular-
ized LS was selected empirically through a grid search, and the reported results
correspond to those with the lowest MSE on the test set (denoted as “best
regularized” in Table 1).

6 Results and Discussion

In this section, we present and discuss the results of the cross-validation ex-
periment. We first present the predictive accuracies, and continue with a more
qualitative analysis of the results.

Table 1 shows the accuracy the LBM and the NLBM Models in the 10-
fold cross-validation scenario. All three accuracy measures show that the NLBM
model gives a small but consistent improvement over all LBM models. A t-test
was performed over theMSE, showing that the difference between the LBM with
lowest MSE (the regularized LBM, from now on referred to as the best LBM),
and NLBM is statistically significant (t(316344) = 4.64 at p = 3.5× 10−6). This
may not seem surprising, since FFNNs are known to be universal approximators,
i.e. they can uniformly approximate any continuous function on a compact input
domain to arbitrary accuracy, given that the model has enough hidden units [1].
However, the limited amount of training data, and the approximate nature of the
parameter optimization techniques may well limit the improvement in accuracy
in practice.

Prior work has revealed that a major part of the variance explained by the
LBM is accounted for by the basis functions that represent dynamic markings
and pitch, respectively, whereas other basis functions had very little effect on
the predictive accuracy of the model [13]. To gain a better insight into the role
that different basis functions play in each of the models, the learned models
must be studied in more detail. For the LBM this is straight-forward: Each
of the basis-functions is linearly related to the target using a single weight,
so that the magnitude of a weight is a direct measure of the impact of the
corresponding basis-function on the target. In a non-linear model such as the
NLBM, the weights of the model cannot be interpreted in such a straight-forward
way. To accommodate for this, we use a more generic method to analyze the
behavior of computational models, referred to as sensitivity analysis.
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6.1 Sensitivity analysis

In order to account for the effects of the different basis functions, a variance
based sensitivity analysis was performed on the trained LBM and NLBM mod-
els [24]. In this way, the sensitivity of the model as a function of the input basis
functions φ given the parameters w, i.e. y = f(φ | w) is explained through a
decomposition of the variance of y into terms depending on the input basis func-
tions and their interactions. The first order sensitivity coefficient S1i measures
the additive effect of the basis function φi in the model output, while STi , the
total effect index, accounts for all higher order effects (interactions) of a factor
φi. These sensitivity measures are given respectively by

S1i =
Vφi(Eφ\φi

(y | φi))

V (y)
and STi =

Eφ\φi
(Vφi(y | φi))

V (y)
, (7)

where Vφi is the variance with respect to the i-th basis function, Eφ\φi
is the

expected value with respect to all basis functions but φi and V (y) is the total
variance of y. It can be shown that

∑
i STi ≥ 1, with the equality occurring if

the model is linear (as is the case with LBM), and S1i = STi . Both quantities are
estimated using a quasi-Monte Carlo method proposed by Saltelli et al. [24], that
generates a pseudo random sequence of samples using low-discrepancy (Sobol
sequences) to estimate the expected values and variances in the above equations.

Table 2 lists the basis functions that contribute the most to the variance of
the model, ordered according to STi for the best LBM and the NLBM models.
These results show that the polynomial model (the basis functions pitch, pitch2,
and pitch3) and the dynamics annotations (the basis-functions for f, ff, ff and
their anticipations, pp anticipation, and sotto voce) have the strongest impact
on the predicted MIDI velocities in the LBM models. This is consistent with
findings reported in [13]. The other basis functions in the LBM list pertain to
time signatures that occur relatively rarely: 12/8 time signature occurs in 4
pieces; the high ST values for those bases may well be due to an overfitting of
the model to the particularities of those pieces.

The list of bases to which the NLBM model is most sensitive (Table 2, right
half) shows a similar pattern, i.e. the strongest effect on the predicted dynam-
ics come from the dynamics annotations, with a smaller contribution from the
polynomial pitch model. Comparing the total effect index and the first order
sensitivity coefficient shows that the non-linear effects in the NLBM model cap-
ture interactions between the certain basis functions, e.g. diminuendo (dim.)
with ST = 0.173 and S1 = 0.087 and crescendo (cresc.) with ST = 0.133 and
S1 = 0.051. These results also suggest an increased total effect index for gradual
basis functions (like cresc. or dim.).

Figure 3 illustrates how the NLBM model can account for interactions be-
tween the cresc. and dim. These bases interact in ca. 28% of the Magaloff corpus.
In this context, interaction should be understood as those instances where the
value of both basis functions is non-zero at the same time, i.e. when dim appears
after a cresc., before a new constant loudness dynamics markings appear on the
score (see Figure 1 and Section 3.1). The lower half of the figure shows the cresc.
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LBM NLBM
basis function ST S1 basis function ST S1

pitch3 0.187 0.187 ff 0.182 0.160
ff 0.112 0.112 diminuendo 0.173 0.087
duration 0.085 0.085 crescendo 0.133 0.051
pitch 0.081 0.081 fff 0.115 0.095
fff 0.080 0.080 f 0.095 0.082
f 0.044 0.044 duration 0.082 0.052
pitch2 0.022 0.022 pitch3 0.046 0.041
pp 0.021 0.021 pp 0.032 0.020
f anticipation long 0.016 0.016 pitch2 0.017 0.015
ff anticipation long 0.015 0.015 4/4 weak beat 0.016 0.014
12/8 beat 1 0.013 0.013 p 0.015 0.008
4/4 weak beat 0.013 0.013 p anticipation short 0.014 0.013
fz 0.013 0.013 f anticipation long 0.013 0.010
12/8 beat 2 0.012 0.012 ff anticipation long 0.013 0.012
accent 0.011 0.011 mp 0.012 0.008
12/8 beat 7 0.011 0.011 p anticipation long 0.012 0.010
3/4 beat 1 0.011 0.011 pitch 0.012 0.009
12/8 beat 8 0.010 0.010 accent 0.010 0.009
p 0.010 0.010 fz 0.010 0.008
6/8 beat 1 0.009 0.009 mf 0.010 0.005

Table 2. Basis functions with the largest sensitivity coefficients for the best LBM and
NLBM models; Averages are reported over the 10 runs of the cross-validation.

and dim. basis functions in two different contexts: cresc. alone and the effects of
cresc. after dim. The upper leftmost figure represents the case of the dynamics
predicted by the best LBM using the crescendo basis function alone. The up-
per center figure shows the predicted dynamics by the NLBM using only cresc.,
while the upper rightmost figure shows the interaction of a cresc. after a dim.
for both NLBM and the best LBM models. Here it is possible to see a diminished
effect of the cresc. on predicted dynamics by the NLBM when it appears after
a dim. On the other hand, these results also illustrate the inability of the LBM
to model interactions between basis functions. These results also suggest that
the NLBM model might be able to capture a more “natural” dynamics curve for
basis function that represent gradual changes, like cresc., and polynomial pitch
model. The interaction between cresc. and dim. illustrates how the NLBMmodel
can capture interactions between basis functions that the (simpler) LBM model
is not able to describe.

The results in Table 2 suggest that some of the most important basis functions
for both the LBM and NLBM correspond to certain rules in the KTH model, as
is the case of the polynomial pitch model and the High Loud phrasing rule2.

2 See Table 1 in [10] for an overview of the rules of the KTH model.
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Fig. 3. Example of the effect of the interaction of crescendo after a diminuendo for
both LBM and NLBM models.

7 Conclusions

In this paper, a neural-network based model for musical expression was pre-
sented. This model is shown to perform better than previous work based on
linear basis models. A sensitivity analysis performed on the two models suggests
that the new non-linear approach is able to capture certain interactions of basis
functions that cannot be captured in linear models.

In this work, we used simple music-theoretically informed numerical descrip-
tors to capture certain aspects of the score. The results presented above suggest
that new basis functions could improve the performance of the presented model.

Additionally, the presented results suggest that the LBM model benefits from
bases that contain redundant information (such as long and short anticipation
and the polynomial pitch model). It would be interesting to determine wether
the NLBM model can capture the similar effects, without recurring to the use
of such basis functions, e.g. by using only pitch instead of pitch, pitch2 and
pitch3. Another interesting question would be to investigate to what degree the
nonlinear mappings from basis functions to targets improves the accuracy of the
model for non-binary basis functions.

An interesting approach from the music-theoretic side would be the use of
basis functions that encode structural (i.e. form) and harmonic information of
the piece. Among these basis functions could be the use of key identification
algorithms and pattern identification techniques [27].

Furthermore, it would be interesting to use a combination of unsupervised
learned features (using Deep Learning) and music-theoretic-informed features for
analyzing and predicting expressive music performance, expanding previous work
by van Herwaarden et al. [18]. Following previous work on Bayesian LBMs [15],
the presented framework can also be expanded into a fully probabilistic approach
using the framework of Bayesian neural networks [1].
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As stated in Section 3, neither the NLBM, nor the LBM (in both its deter-
ministic and Bayesian formulations) allow for modeling of temporal dependencies
within parameters. This issue can be addressed by using a temporal model, such
as recurrent neural networks (RNNs) [16], conditional random fields (CRFs) or
considering the temporal autocorrelation [8].
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