
Making Tabletops Useful with Applications, Frameworks

and Multi-Tasking

Carles F. Julià

TESI DOCTORAL UPF / 2014

Dirigida per:

Dr. Sergi Jordà

Departament de Tecnologies de la Informació i les Comunicacions

© 2014 Carles F. Julià

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 Interna-
tional License. To view a copy of this license, visit http://creativecommons.org/licenses/by-
sa/4.0/.

ii

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Als companys de viatge.

iii

iv

Acknowledgements

It’s difficult to list all the people that contributed to this thesis. A thesis is not only the
result of the work of the author, but also of the many people that contributed, directly
or indirectly, to this research culmination.

I’d like to thank the Music Technology Group and its director Xavier Serra for supporting
my research. Also and specially my thesis director, Sergi Jordà, for allowing me to choose
my path and supporting my decisions along the journey of this PhD, and for always being
open to start a powerful discussion and to share his thoughts. I also thank Emilia Gómez
and Alba B. Rosado for involving me in the PHENICX project.

This thesis includes work of which I was not the sole author and of which I must
very much thank many people for: Daniel Gallardo shared with me many of the pre-
sented projects and his contribution has been essential to them; TDesktop, TurTan,
ofxTableGestures and MTCF can’t be explained without him. Milena Markova was
responsible for running the TurTan experiments, Miguel Lechón performed tests on
the SongExplorer, and Nicolás Earnshaw tested GestureAgents, as part of their Master
Thesis. Also, Marc Colomer restored and re-documented many of the TSI applications
that are later presented here. Many students and projects from various courses have
contributed to this work, using the frameworks or creating applications. In particular
students from the TSI and CDSIM courses, undergraduate final projects from computer
science and media students, and master thesis from SMC and CSIM students.

At a personal level, I also want to thank my family, for their constant support; Clara,
for her sincere companionship and permanent aid over many years and, of course, her
valuable English proof-reading; the current and former MAIn people (Dani, Sebastian,
Sergi, Mathieu, Gianmaria, Yuya, Joana, Nuno, Marc, Alex); Alba, Cristina and Sònia;
my present and former MTG colleagues; and Lydia and all the university staff.

v

This work is partially supported by the Spanish Ministry of Turism and Commerce
(MITYC) through the Classical Planet project (Plan Avanza Grant agreement No TSI-
070100-2009-407) and by the European Union 7th Framework Programme through the
PHENICX project (grant agreement no. 601166)

vi

Abstract

The progressive appearance of affordable tabletop technology and devices urges human-
computer interaction researchers to provide the necessary methods to make this kind
of devices the most useful to their users. Studies show that tabletops have distinctive
characteristics that can be specially useful to solve some types of problems, but this
potential is arguably not yet translated into real-world applications. We theorize that the
important components that can transform those systems into useful tools are application
frameworks that take into account the devices affordances, a third party application
ecosystem, and multi-application systems supporting concurrent multitasking.

In this dissertation we approach these key components: First, we explore the distinctive
affordances of tabletops, with two cases: TurTan, a tangible programming language in
the education context, and SongExplorer, a music collection browser for large databases.

Next, in order to address the difficulty of building such applications in a way that they
can exploit these affordances, we focus on software frameworks to support the tabletop
application making process, with two different approaches: ofxTableGestures, targeting
programmers, and MTCF, designed for music and sound artists.

Finally, recognizing that making useful applications is just one part of the problem, we
focus on a fundamental issue of multi-application tabletop systems: the difficulty to
support multi-user concurrent multitasking with third-party applications. After ana-
lyzing the possible approaches, we present GestureAgents, a content-based distributed
application-centric disambiguation mechanism and its implementation, which solves this
problem in a generic fashion, being also useful to other shareable interfaces, including
uncoupled ones.

vii

viii

Resum

L’aparició progressiva de tecnologia i dispositius tabletop barats urgeix a la comunitat de
recerca en interacció persona-ordinador a proveir els mètodes necessaris per transformar
aquests dispositius en eines realment útils pels usuaris. Diversos estudis indiquen que
els tabletops tenen algunes característiques peculiars que poden ser especialment útils
per solucionar algun tipus de problemes, però tanmateix sembla que el seu potencial
encara no arriba a transformar-se en aplicacions reals. Creiem que els components
importants per a transformar aquests sistemes en eines útils són frameworks d’aplicació
que tinguin en compte les capacitats dels dispositius, un ecosistema d’aplicacions fetes
per desenvolupadors independents, i sistemes multi-aplicació amb suport per multitasca
concurrent.

En aquesta tesi doctoral ens aproximem a aquests components clau: En primer lloc,
explorem les capacitats dels tabletops, usant dos casos: TurTan, un llenguatge de pro-
gramació tangible en el context educatiu, i SongExplorer, un navegador de col·leccions
musicals per a grans bases de dades.

A continuació, amb ànim d’abordar la complexitat a l’hora de crear aquest tipus d’a-
plicacions de tal manera que usin aquestes capacitats, ens centrem en els frameworks
de programari per donar suport en el procés de creació d’aplicacions tabletop, amb dues
aproximacions diferents: ofxTableGestures, dirigit a programadors, i MTCF, dissenyat
per a artistes musicals i del so.

Finalment, reconeixent que crear aplicacions útils és només part del problema, ens cen-
trem en una questió fonamental dels sistemes multi-aplicació: la dificultat d’acceptar la
interacció multitasca de forma concurrent i multi-usuari amb aplicacions externes. Des-
prés d’analitzar-ne les possibles aproximacions, presentem GestureAgents, un mecanisme
de desambiguació (i la seva implementació corresponent) basat en el contingut, distri-
buït i centrat en les aplicacions, que soluciona aquest problema d’una forma genèrica,
esdevenint útil també per altres interfícies compartibles, incloses les desacoblades.

ix

x

Contents

1 Motivation 1
1.1 Learning from mistakes . 1
1.2 A personal introduction to the thesis . 3
1.3 Contributions of this thesis . 3
1.4 Structure of this document . 4

2 Introduction 7
2.1 The usefulness of the personal computer 7
2.2 Interaction in personal computers . 8

2.2.1 WIMP . 9
2.2.2 Direct Manipulation . 10
2.2.3 Multi-Tasking and third-party applications 11
2.2.4 Interaction Foci . 12
2.2.5 Post-Wimp GUI . 14

2.3 Gestural Interaction . 15
2.4 Tangible Interaction . 17

2.4.1 Tangible and tabletop . 20
2.5 Making tabletops useful . 23

3 Exploring tabletops’ distinctive affordances 27
3.1 Affordances of tabletops . 27

3.1.1 Simultaneous input . 27
3.1.2 Collaboration . 28
3.1.3 Physicality . 30

3.2 Existing tabletop applications . 32
3.3 The presented applications . 36
3.4 Hardware Setup . 36
3.5 TurTan, a tangible tabletop programming language for education 40

3.5.1 TUI in learning . 41

xi

Contents

3.5.2 Tangible programming languages 42
3.5.3 TurTan interaction mechanics . 43
3.5.4 TurTan language, as an example of a Tangible Programming Lan-

guage . 46
3.5.5 Is TurTan better than Logo in an education context? 50

3.6 SongExplorer, a tabletop for song database exploration 55
3.6.1 Visualization of music collections 57
3.6.2 Feature Extraction . 59
3.6.3 Visualization . 59
3.6.4 Interface Evaluation . 65
3.6.5 Is map coherence important for music discovery? 67

3.7 Tabletop Applications TSI . 71
3.7.1 Puckr . 72
3.7.2 TUIGoal . 72
3.7.3 Punk-o-Table . 73
3.7.4 Smash Table . 73
3.7.5 80-table . 74
3.7.6 Tower Defense . 74
3.7.7 Pulse Cubes . 74
3.7.8 Rubik Musical . 76
3.7.9 Naus . 78
3.7.10 Scrabble . 79
3.7.11 Ranas . 79
3.7.12 TSI applications’ statistics . 79

3.8 Conclusions . 80

4 Empowering application developers 83
4.1 ofxTableGestures: a framework for programmers 84

4.1.1 The early stages: providing libraries (2009) 85
4.1.2 Creating Gestures is the key (2010) 88
4.1.3 Multi-user gestures (2011) . 93
4.1.4 Simplifying the API (2012) . 98
4.1.5 Discussion . 103

4.2 MTCF: a platform for sound and music tabletop creation 104
4.2.1 A Reactable-like playground . 105
4.2.2 Allowing interface design . 112

xii

Contents

4.3 Conclusions . 117

5 Multi-Application systems: GestureAgents 119
5.1 Introduction . 119
5.2 Collaboration in shareable interfaces . 120
5.3 Multi-Tasking Shareable Interfaces: Current Situation and Related Research122
5.4 Approaches to Multi-Tasking . 125

5.4.1 Input sharing . 125
5.4.2 Area-based interaction . 127
5.4.3 Arbitrary Shape Area-Based Interaction 128
5.4.4 Content/Semantics -based input sharing 131

5.5 Approaches for Multi-Gesture Applications 135
5.5.1 Gesture recognition and disambiguation in a single application . . 135
5.5.2 Gesture Composition . 140
5.5.3 Single-Gesture Certainty and Real Time Disambiguation Strategies 140

5.6 Implementation of GestureAgents Framework 142
5.6.1 Elements of GestureAgents . 142
5.6.2 GestureAgents Protocol . 144
5.6.3 Restrictions on the Behaviors of Recognizers 148
5.6.4 The GestureAgents System . 149

5.7 The GestureAgents Recognition Framework 152
5.7.1 Recognizer composition . 152
5.7.2 Recognizer instances as Hypotheses 154
5.7.3 Context polling . 156
5.7.4 Link with the application . 158
5.7.5 Provided Gestures . 158

5.8 A second iteration: Composition with 3rd Party Apps 158
5.8.1 A working gesture composition example 159
5.8.2 Two apps, two developers and composition: Not working 161
5.8.3 Revisiting gesture composition . 163
5.8.4 Implementation . 164
5.8.5 Effects on Policies . 167
5.8.6 Portability . 167
5.8.7 Testing . 168

5.9 Applications and systems created with GestureAgents 168
5.9.1 Original tests . 168

xiii

Contents

5.9.2 Example Applications . 169
5.9.3 Orchestra Conductor Gesture Identification 171

5.10 GestureAgents Code . 176
5.11 Discussion on the framework . 177

5.11.1 Accessory agents . 177
5.11.2 Temporary Feedback . 177
5.11.3 Supporting Other Gesture Recognizing Techniques 178
5.11.4 Security . 178
5.11.5 Efficiency . 179
5.11.6 Debugging and Testing . 180
5.11.7 Considerations on the second iteration 180
5.11.8 Considerations on decoupled interfaces 181
5.11.9 Future steps . 183

5.12 Conclusions . 183

6 Conclusions 185
6.1 Contributions . 186
6.2 Future Work . 187

Bibliography 189

A List of publications 205

B Tabletop applications in TEI, ITS, and tabletop conferences 207

C TSI Applications 209

xiv

1 Motivation

The intention of this thesis is to boost the usefulness of tangible tabletop
interfaces which are scarcely used today. The tablet PC introduces a good
precedent of a new technology that while currently being widely adopted,
failed in its first attempt to be integrated into mainstream culture. We
argue that the causes of this early failure were related to the lack of support
of the affordances provided, something similar to what, in our opinion, is
happening to tabletops.

1.1 Learning from mistakes

In recent years, we have witnessed the successful adoption of multi-touch personal de-
vices, bringing ubiquitous computing to a broad population. Tablets, smartphones and
other personal devices are now an integral part of our lives. We use them every day and
find them somehow essentially useful.
One could think that these very useful devices were destined to rule our lives from their
invention but, far from this recent success, the turbulent story of tablets started quite
some time before.
In 2001 the tablet PC was introduced to the market by Microsoft. It consisted of a
specification to build laptops that would transform into tablets, devices in which the
keyboard was hidden and all the interaction was done directly through the screen. The
idea was to try to fill the gap between laptops and paper: although paper was preferred
over computers for some tasks and situations, such as note-taking or drawing and paint-
ing, the resulting document had to be digitized in order to get all the benefits of a digital
document. Creating the document directly in the computer was still possible, but the
uncoupling of the keyboard and mouse from the visual representation when taking notes,
or of graphic tablets in the case of drawing, simply could not beat the directness of pen
and paper, where one draws and writes directly on the resulting document.
The affordances theoretically provided by the tablet PC were very valuable: by interact-
ing directly with the screen, users could get rid of the indirection that was supposedly

1

1 Motivation

preventing them to use computers for the aforementioned activities. However, in the end,
it did not achieve its goal of replacing paper in those situations. The lack of adoption of
these technologies can be blamed upon several aspects, the first probably being that the
additional price requested for a tablet PC over a laptop was too high at the time. The
ergonomic solution was not optimal either; as those devices were cased on convertible
laptops, and their weight and thickness made them too impractical to replace paper.

While these two factors could explain the phenomenon from a technological point of
view (as in "we did not have the technology back then"), we must also recognize the
failure of the interaction strategy. The tablet PC was conceived as an extension of the
traditional PC, in a sense that most of the input created by the pen-based interaction
was equivalent to the mouse-based one: there existed equivalents for click, double click,
free mouse movement, etc, because both applications and operating systems needed to
support both input methods, and the easiest solution was to emulate a mouse. This
obviously forced the interaction to be lowered to the maximum common subset. Those
first tablet devices could be practical for either traditional computer activities or paper-
like interaction; but not for both at the same time.

This limitation interferes with the original affordances that were expected from this kind
of systems and blocks them. Having an expensive version of a laptop which includes
technology that does not pay off is probably the reason that drove potential users not
to adopt it.

Finally, in recent years, we have witnessed the successful adoption of tablets (together
with multi-touch technologies). This time the devices unharness their interactive and
ergonomic affordances by not limiting the interaction: the operating system, the appli-
cations and the form factor are designed to empower those affordances. The results are
well known.

A different kind of multi-touch devices, those which are not personal and small, but
big and shared, is still yet to spread, of which many key affordances are often associ-
ated with these, such as collaboration and multi-user interaction. It is undeniable that
any improvement of co-located collaborative interaction beyond the personal computing
device family, which is, by definition, personal, would be extremely useful.

But before we start selling those devices as open, general-purpose computing devices
we have to be sure that we understand their affordances and we empower them. The
consequences of not preparing the tablet to fulfill the same functions it was designed to
support, cost 9 years of misleading device production. We definitively do not want to
make the same mistakes, as it would delay a useful technology that would solve many

2

1.2 A personal introduction to the thesis

problems, in a more convenient and accurate way than today.

The goal of the work described in this dissertation is to approach many of the obstacles
that prevented (and some still prevent) these kinds of interfaces from being the next
paradigm-changing technology that they could be.

1.2 A personal introduction to the thesis

My final undergraduate project was based on creating TDesktop, a Tangible Operating
System, e.g. an OS for Tangible Tabletops. My Masters Thesis was centered on creating
SongExplorer, a Tabletop application for finding new interesting music using spatial
exploration. Those two experiences shaped my understanding of Tangible Tabletop
Interaction in ways that I was not aware of and were the first steps in trying to solve a
problem that was not explicitly stated and that has guided my entire career. It was not
until my third year of my PhD that I started to realize the big conceptual problem that
I was trying to solve.

My time working in the Musical and Advanced Interaction team (MAIn) in the Music
Technology Group (MTG) at Universitat Pompeu Fabra (UPF) has involved working
on several projects, usually around this problem: making the best of Tangible Tabletop
interfaces. Some of the work has been driven (or stimulated) by the teaching I did,
around interaction topics to very different groups of students.

The consistency of this thesis is, therefore, not given by the typical path of a seminal
problem, of its analysis and solution, and its results; but as a large problem space
and some steps to solve and explore major areas of it. It is thus composed of several
actuations, some of them published, that structure a dissertation about how we should
envision the future of this field.

1.3 Contributions of this thesis

This thesis covers many different topics in the path of Making Tabletops Useful, and
so its contributions are diverse. The first part of the thesis contributes by exploring
the distinctive affordances of tabletop devices and how they can be used in the fields of
tangible programming, education, collection and map browsing and exploration. In par-
ticular, the approaches presented in these first sections are novel in tangible tabletops.
An exploration of typical interaction design strategies that emerged in a tabletop appli-
cation creation course are also presented. These observations and project presentations

3

1 Motivation

are relevant, given the lack of such observations in the field.
On a second part, two different approaches to support tabletop application creation
are presented, addressing the specific needs of potential users. A novel teaching-driven
approach is used and described, revealing the main problems new programmers face
when creating this type of interfaces.
The last part presents what can be considered the main contribution of this thesis: a
problem that has not yet been identified in the state of the art of tabletop systems: In or-
der to support general purpose computing and to be useful to its users, tabletop systems
should allow multi-user concurrent multi-tasking. The identification of this problem,
its analysis and the proposed solution and development are important contributions.
As a consequence, the specific strategy of a protocol-based content-based gesture disam-
biguation both inside a single application and between multiple applications is a relevant
contribution. Finally, the approach of creating a device-agnostic (inter-application) ges-
ture disambiguation mechanism covering coupled and uncoupled interfaces is also novel.

1.4 Structure of this document

The rest of this document is divided in five chapters. In the next one, Chapter 2:
Introduction, we introduce the concepts and background required to understand the
scope and focus of my work, stepping into interaction in personal computers, tangible and
tabletop interaction, gestural interaction, interaction in windowing systems and finally
presenting the plan for making the best of Tangible Tabletop interfaces by addressing
three components: systems, applications and frameworks.
Chapter 3, Exploring tabletops’ distinctive affordances, focuses on the affordances and
capacities of tabletops, and how applications can make use of them. In this chapter we
present the work by exploring two of the such specific capabilities: creative learning and
programming, with TurTan, and large data exploration using spatial exploration, with
SongExplorer.
Chapter 4, Empowering application developers, is devoted to frameworks and how they
support various programming techniques and solutions to common problems. In this
chapter we present two approaches created in different circumstances: when supporting
undergraduate students for a tabletop application creation course, and when supporting
NIME1 students and practitioners.

1NIME stands for New Interfaces for Musical Expression. It is a field that addresses novel interface
design related to music performing, both from practitioners’ and researchers’ perspectives. The name
was coined after its main yearly conference (http://www.nime.org/)

4

http://www.nime.org/

1.4 Structure of this document

Chapter 5, Multi-Application systems: GestureAgents, focuses on the computing systems
that run and manage applications, and their role with applications in the context of
tabletop systems. Here we introduce a modern approach to the problem of concurrent
multiuser multitasking in a single interface and its possible approximations, we explain
how the selected approach can also be used to support multi-user interaction inside
applications, and present a framework created to solve these problems.

Finally, Chapter 6, Conclusions, summarizes the work and advances made throughout
this thesis, and comments on future work.

5

1 Motivation

6

2 Introduction

Understanding where we are coming from, is essential to assess the current
situation. Why are PCs successful? How are they designed to support their
capabilities? How are Tangible User Interfaces providing their own set of
capabilities? What should we do to make Tabletops a useful computing
platform?

2.1 The usefulness of the personal computer

The advent of computers and personal computing devices has had a very deep impact
in recent history. Their usefulness relies in their capacity of performing tasks that previ-
ously were inconvenient, difficult or impossible, and the core goal of Human-Computer
Interaction is indeed devoted to support users accomplishing these tasks (Shaer and
Hornecker, 2010).

Many qualities of computers contribute indeed to this goal of easing task solving pro-
cesses:

Computing power This was the original function of computers, the ability to compute
mathematical operations in an unprecedented speed. There is no need to even
try to enumerate the infinity of practical applications that computing power has
created, transforming our world.

Convenience Computers make it easy to perform simple but repetitive tasks, instantly.
Boring tasks that may not be specially difficult, when automated, can be performed
in a fraction of the time originally needed, thus making them accessible to much
more people. Spreadsheets are a good example: accounting existed before com-
puters, but it is now more widely accessible.

Connectivity It could be argued that portable computing devices do not specially excel
in computing power. Still, their usefulness has proved to be an absolute success,
probably because of their connectivity, which allows users to communicate in effi-
cient ways.

7

2 Introduction

General-purpose computing What makes computers even more useful is that they are
generic tools. The purpose and function of a computer can be changed by chang-
ing its program. This uncoupling of the device from its function, frees computer
builders from having to think about every possible use of the machine. Other
parties can create programs that will turn that computer into different specific
tools such as a word processor or a calculator. In the smartphone revolution, for
instance, the availability of third-party applications has also arguably been instru-
mental to their success (West and Mace, 2010).

These capabilities can be present in all computing devices. We could say that these are
their affordances, in terms of its original meaning introduced by Gibson (1977), referring
to all the possible action possibilities that an object provides to an individual and of
which this individual is capable of performing.

The popularization of the concept of affordance by the HCI community is only with
its second meaning, established by Norman (1988), that includes the requisite of these
action possibilities being perceived by the individual. With this definition, affordances of
manufactured objects will depend on the ability of designers to facilitate the perception
and inference of the offered action possibilities.

In our case, different instantiations of computers will have different success in facilitating
access to the aforementioned capabilities to their users, depending on their Norman’s
affordances embedded in their design. It is also important how those are strengthen with
their interaction strategies.

The next sections present how those computing devices are and how their interaction
methods provide (or complicate) those affordances.

2.2 Interaction in personal computers

Although most of the discussions and work described in this document relate to tangible
interaction, we will introduce concepts from the PC1-based HCI. Tangible Tabletop
interaction techniques have been influenced by previous ones, mostly related to the
paradigmatic technology of the time.

In the same way that PC interaction was inspired by the technology of the time (i.e.
documents, folders, desktops, typewriters...) the next wave of devices (such as tabletops
or smartphones) were, on its turn, inspired by already established personal computers’

1In this text we will be referring to the Personal Computer as PC, not referring to a particular brand,
architecture or operating system.

8

2.2 Interaction in personal computers

concepts (Blackwell, 2006).

In order to fully discuss aspects of tangible and tabletop interaction we must therefore
first understand the origin of the PC desktop metaphor and of many of its elements,
which were later adapted.

2.2.1 WIMP

Modern day computer systems use Graphical User Interfaces (GUI) to interact with the
user. This involves the use of visual monitors for output information. But previously
the interaction was purely textual, consisting of a Command Line Interface (CLI). The
user typewrote commands to the computer (initially they were printed on paper) and
the computer answered by typing text in the same medium. After introducing monitors,
it was clear that those could be used to show more than text, such as images, and later
interactive images for interaction, GUIs.

In most of the current cases of PC operating systems, they have GUIs that make use
of the WIMP paradigm. The Window Icon Menu Pointer (WIMP) interaction was
developed at Xerox PARC and popularized with Apple’s introduction of the Macintosh
in 1984. It refers to the GUI that bases its interaction to control programs via several
elements drawn in a graphical display:

Windows are rectangular areas that contain the GUI of an individual running program.
Instead of occupying the whole screen, programs are contained in windows that
can have arbitrary sizes and can be moved around.

Icons are graphical representations of (virtual) objects or actions. Computational ac-
tions -such as commands- can be triggered by interacting with them. For instance,
most of the interaction in file system operation is based on manipulating icons.

Menus are selection systems based on graphical lists of actions. The items can be
textual or iconic and the menu may contain items that hold other menus -sub-
menus- creating hierarchical menus. Menus that can be invoked anywhere are
called contextual menus and they only give operations that are possible in the
current context.

Pointer is a virtual element on the screen (usually depicted as an arrow) that can be
controlled using a physical device (such a mouse or a touchpad) and that is used
to interact with all the virtual elements of the screen.

Metaphors (prominently relating to the office world) are largely used in those systems,
relating virtual elements and behaviors to real ones using their pictograms as icons: files

9

2 Introduction

(represented by paper icons) can be removed by placing them into the deleting folder
(represented by a bin icon). The whole system is often called the desktop metaphor, as
most of the references relate to desktop and office objects and actions.

The use of metaphors has been vastly discussed in the HCI field. The concept itself
is central to this discipline. Although shaping interaction to loosely mimic real world
behaviors seems to be valuable for users, its abuse can be considered harmful. As time
passes and computers become more prevalent, some of the metaphors lose their original
meaning as the real world references decay in importance, and we see the computer-based
behaviors as the reference for newer metaphors in other systems (Blackwell, 2006).

2.2.2 Direct Manipulation

Most of the aforementioned techniques can be placed around the concept of direct manip-
ulation, a term that was first introduced by Ben Shneiderman in 1983 within the context
of office applications and the desktop metaphor (Shneiderman, 1983). The concept was
introduced to criticize the command line interface, dominant at the time, where com-
mands are entered in textual mode by the user into a command prompt, usually adopting
a “command argument1 argument2 ...” structure. In contrast Shneiderman proposed
replacing this interaction by another one centered on the object: instead of starting
with the verb (command) and then adding the arguments, to start with the object (ar-
gument) to then select the verb. The object could be a visual representation such an
icon, a particular place in a text (the cursor) etc. Direct manipulation refers also to
the ability to perform actions on the object using contextual menus that only show the
available commands for such object and context, or by using actions that would loosely
correspond to the physical world, such as virtually dragging an icon to issue a move or
transfer command.

The rationale behind these propositions was to concentrate the action-related informa-
tion and interaction near (or over) the manipulated object, while maintaining a visual
representation of the actual data (as in WYSIWYG (Hatfield, 1981)), assuming that
real-world metaphors for both objects and actions would make it easier for users to learn
and use an interface.

This idea is important not only to the WIMP interaction paradigm and the desktop
metaphor in PCs, but also to further evolutions of the computer user interface, such as
in tangible interaction.

10

2.2 Interaction in personal computers

2.2.3 Multi-Tasking and third-party applications

General-purpose computing allows a single computing device to change its function ac-
cording to a program. The computer itself has no specific objective, as a calculator would
have. Logical programs are executed by the computer instead, making it useful for a
specific calculation or any task completion. On the other side, as the universe of possible
complex tasks and problems to be solved with the assistance of a computer is broad and
open, it seems rather unpractical to create a single program for every different task. As
complex tasks can often be divided in simpler subtasks, the particularity of every task
will often require the use of several different more generic programs, which will address
some of the subtasks we can divide the original problem in. Those programs, on its turn,
can then be reused for other different tasks.

Let us imagine, for instance, that someone is writing a report on the discoveries of
new wildlife in a country. This task will require writing, editing and formatting text,
capturing, classifying and editing images, calculating statistics and displaying charts,
creating and manipulating maps, etc. Instead of having a single program for “new
wildlife finding report writing” involving all these activities, several programs addressing
the needs of every single activity can be used: a word processor, an image editor, a file
browser, a spreadsheet editor, a map browser, etc. These programs, such as text editors
or image viewers, usually designed to solve domain-specific problems, can be also created
by parties that do not relate to the creators of the hardware or the programmers of the
OS. These third-parties can be programmers or teams that have an expert knowledge of
the field the program is focused on. Allowing third party software to be created without
the prior consent of the computer’s and OS’ designers or other software creators, allows
new programs to continuously appear for filling potential new needs.

There is indeed a common agreement that allowing third-party applications is an impor-
tant factor for success on commercialization of computing platforms. A classic example
would be the effect of commercialization of the Lotus 1-2-3 spreadsheet program exclu-
sively for the IBM’s PC. Sales of IBM’s PC had been slow until 1-2-3 was made public,
and then increased rapidly a few months after Lotus 1-2-3’s release2. As a more contem-
porary example, Apple trademarked the slogan "there is an App for that" for its iPhone
3g selling campaign on 20093, advertising the availability of third-party apps as its main
appeal. This move by Apple revolutionalized the smartphone scene (West and Mace,
2010).

2https://en.wikipedia.org/wiki/Killer_application
3http://www.trademarkia.com/theres-an-app-for-that-77980556.html

11

https://en.wikipedia.org/wiki/Killer_application
http://www.trademarkia.com/theres-an-app-for-that-77980556.html

2 Introduction

Modern operating systems and computers allow several programs to be ran in parallel,
and to switch interaction with the user at any desired time. This ability, multi-tasking,
helps to use computers to solve a particular task that involves several steps and requires
potentially different programs, in a more convenient way than having to stop the current
program to start another. Multi-tasking would be indeed very convenient in our hypo-
thetical new wildlife finding report writing activity: while our user is writing the report,
she has the need of inserting a picture of a new specimen. She switches the interaction
from the word processor to a file browser to find the picture she wants, she then opens it
inside an image editing program (another switch), where she crops the marginal part of
the picture. She then switches again to the word processor (that still holds the document
she was working on) to insert the modified image.

2.2.4 Interaction Foci

Some characteristics of PC interaction are directly related to the very purpose of personal
computing and often overlooked, assuming its universality. A notable example could
be that PCs are designed as single-user appliances, and every aspect of them is only
supposed to be used by one single user at a time. This focus can be explained by the
context for which personal computing was developed: the office. Many office-related
activities are individual: writing, accounting, reading, drawing... it was logical to shape
PCs with this in mind; the setup of a monitor, a keyboard and mouse is optimized for
individual focused work.

One evident consequence of this is that PCs are supposed to have one single keyboard
and mouse, to be operated by one single individual. This constrain has very deep
implications in the mechanisms of current systems: Only one virtual pointer is available,
so multiple pointing physical devices will refer to the single virtual pointer on the screen.

The consequence is that there is a single application with a single widget that will receive
all the keyboard input events: one privileged application and widget that is in focus. So
multiple keyboard devices will insert text into the same application and position in the
text (cursor) or receiver widget.

The assumption of having only one keyboard and mouse, used by only one user (but not
both at the same time), renders interaction with a GUI much more easy to design in
a way that is predictable. As the mouse and keyboard are uncoupled from the output
device (the graphical display) allowing multiple graphical and textual cursors would
require an explicit mapping to know which device is paired with which cursor.

The mechanism used in personal computing to assign a receiver for the keyboard input

12

2.2 Interaction in personal computers

is called focus. This mechanism makes it easy to predict the receiver of keystrokes from
the keyboard by defining a single target at all times. This target is often highlighted
(using color or intermittent visibility) and its container application window shown on
top (occluding the others).

Focus can be changed both by using the keyboard or the pointer. The keyboard tab key
is used to switch the sink inside the application, or between different applications (in
combination with alt or command keys). Whenever a user interacts with a pointer with
an specific application and widget, it receives the focus.

This mechanism assumes that the mouse and the keyboard will not be used in differ-
ent applications at the same time, for instance writing a letter while drawing a picture,
effectively making interaction with a PC a single-tasked one. Although different appli-
cations can be running simultaneously, even producing video or audio, only one can be
interacted with by the user at the same time.

Research projects and implementations exist that try to cover this many-mice and many-
keyboards issue. MTX (Hutterer and Thomas, 2007) is an extension of X11 graphical
system (present in several flavors of UNIX) that allows having virtual input pairs of visual
cursors and keyboards that can operate at the same time with adapted and legacy X11
applications. Each pair has a focus target and multiple visual cursors can interact with
different applications at the same time or even with the same application if it supports
MTX extension. The main problem MTX has encountered is that widget frameworks
used to build X11 desktop applications may not support this extension and still assume
that there is only one single cursor and keyboard.

Dynamo (Izadi et al., 2003) was another example of many-mice many-keyboards system,
focused also on ownership and permissions over programs, documents, etc in a shared
multiuser WIMP system. Users may use mouse-keyboard pairs to interact with a system
that presents local and shared interfaces. In shared interfaces it focuses the attention on
methods for preserving and sharing control over applications and files. More examples
of systems avoiding a single focus of interaction can be found in Section 5.3.

We have have to consider that having a single focus at a time is extremely useful, and
preventing multi-user or multi-application interaction poses no problem to the PC use,
as the PC is in every aspect designed to be single-tasked and single-user. Even when
using solutions like MTX, the ergonomic characteristics of the PC prevent users from
effectively sharing it with others.

13

2 Introduction

2.2.5 Post-Wimp GUI

Other than the CLI, PCs sometimes expose other types of GUI, not (totally) based on
WIMP. Because of the practical ubiquity of WIMP most of the GUI-building libraries
are WIMP-compliant by default, making the task of building non-WIMP-compliant ap-
plication a difficult one. For this reason, only the applications that are forced to leave
out WIMP principles in order to expose WIMP-incompatible functionality do so.

In particular, immersive experiences such as video games tend to violate some of the
WIMP principles and therefore are forced to give up on them:

Grabbing the cursor Instead of using the mouse to control the movement of the usual
virtual cursor, their movements are used directly. The mouse becomes a controller,
as it would be a joystick, for instance to manage a virtual 3D camera by rotating
its angle or moving its position. In particular, first-person shooter video games
make heavy use of this mapping.

Disabling control keys By using the keyboard as a multi-button controller instead of
a text-input device, games allow the players to control elements of the game very
efficiently. By pressing many keys independently at the same time, users car control
multiple aspects of the game simultaneously, something rather complex to achieve
in the WIMP paradigm. Even multiple players can interact with the application
simultaneously by sharing the keyboard.

As a result of this shift on the keyboard mapping, and because the effective lack of
a single focus point of interaction, the use of some keys as focus control mechanism
disappears.

Full screen By removing the window and adopting the whole screen, a program can
create a more immersive experience, as all other programs and desktop environment
items are hidden. This breaks the multi-tasking capability of WIMP systems on
purpose.

By giving up on the cursor, control keys and windowing elements and capabilities of
WIMP, those applications can offer an immersive, multi-user experience. This means,
however, that the features provided by WIMP, such as multi-tasking support, are also
lost.

Not only games give up WIMP capabilities to overcome its limitations. Coming from
practices of personal multi-touch devices, we have lately seen the introduction of oper-
ating systems that cease using some WIMP interaction windows in favor of full screen

14

2.3 Gestural Interaction

applications (with optional screen tiling as multitasking approach4) probably due to
their limited space and inaccurate pointing mechanisms, and that abandon the mouse as
a pointing device because of convenience. Microsoft Windows 8 native operation follows
this approach5 even in PCs.

2.3 Gestural Interaction

Before the appearance of the WIMP, research on interaction with computers addressed
many now exotic (or just now recovered) modes. The seminal work of Ivan E. Suther-
land in the 1960s and 1970s is essential for the development of new HCI disciplines, and
representative of this open view. With Sketchpad, Sutherland (1964) introduced the
first direct pen-based visual interface to a computer, where the pen input device was
used directly into the screen, manipulating directly the drawn lines and other graph-
ical elements, in order not only to draw, but to program graphically. This work was
extremely influential to the modern GUIs and object-oriented programming languages,
and appeared almost simultaneously as the mouse, created by Douglas Engelbart but
not publicly demoed until 1968.

Four years later, Sutherland also introduced the first ever head mounted display (HMD)
with the aim to present the users with stereoscopic images according to the position
of their heads (Sutherland, 1968), effectively inventing the field of virtual reality. A
field that after a period of practical inactivity seems to be recovering thanks to the
improvements on displaying and tracking hardware that allowed consumer-level HMDs
such as Oculus Rift6 to appear.

If Sutherland can be considered the founder of many HCI fields, Myron Krueger is
the pioneer of gestural interaction, understood as body movement-based interaction.
Krueger experimented with the body silhouette images processed in real time to interact
with the computer. In VideoPlace, (Krueger et al., 1985) the participants entered a
room where their silhouette captured by means of a camera was projected on the wall,
along with digitally generated images of virtual elements. Users could interact with such
virtual objects through their mediating projected image.

The same work explores a desktop version of the system, where only the hands and arms
of the user on top of the table are captured, instead of the full body. Then the interaction

4Microsoft Windows 8 multitasking by tiling http://windows.microsoft.com/en-us/windows-8/getting-
around-tutorial#apps

5Microsoft Windows 8 http://windows.microsoft.com/en-us/windows-8/meet
6http://www.oculusvr.com/

15

http://windows.microsoft.com/en-us/windows-8/getting-around-tutorial#apps
http://windows.microsoft.com/en-us/windows-8/getting-around-tutorial#apps
http://windows.microsoft.com/en-us/windows-8/meet
http://www.oculusvr.com/

2 Introduction

takes place with the silhouette of the hands, displayed in a monitor, ideally embedded
into the wall. This can be considered as the first attempt to create a bimanual user
interface, one designed for the user of the two hands simultaneously. The combination
of the two settings was used also, allowing participants in the interactive room to interact
with the hands of the operator, in another place, with very interesting results.

Following the steps of Krueger, Penny et al. (1999) developed many years later a real-
time video-based capture system for the 3D shape of a user, to be used in 3d interactive
immersive environments, such as the CAVE. In this work, the system could create
an enclosing volume with roughly her shape by intersecting the silhouette images of
the same body from different angles. Penny originally used this system in a series of
artistic experiences in interaction with 3D spaces and entities, from creating voxel-based
automata life in 3d, to leaving 3D shadow traces of the user’s volume. Also, in later
installations, it was used for simple user tracking in 3D space.

Nowadays, volumetric user tracking has been, in fact, popularized thanks to new depth-
perceptive cameras developed for video games, such as Microsoft Kinect7. These use a
structured light approach to capture the depth of the image, in addition to the color one.
This is then processed to extrapolate the pose of the user’s body and used to control
the system using body gestures.

The path of bimanual input laid by Krueger was soon pursued further by Bill Bux-
ton (1986), first at the University of Toronto and later at Xerox Park and at the
Alias|Wavefront company, developing some prototypes such as a multi-touch tablet (Lee
et al., 1985).

An interesting approach into this field was presented by Bier et al. (1993) Toolglass
and Magic Lenses. In it, two pointing devices were used simultaneously by the user;
one as the cursor and the other as a transparent palette between the cursor and the
application. This palette may specify commands, properties, which can be executed by
clicking into the virtual object through the palette. They also provided a preview of the
effect the command was going to perform into the object. A two handed strategy that
was then proved to be natural to the users (Kabbash et al., 1994).

Using two hands to manipulate 3D props in space proved to be also a fruitful approach:
3-draw system by Sachs et al. (1991) allowed to draw in 3D space by using a tablet
representing an arbitrarily oriented plane and a stylus; The Virtual Workbench
(Poston and Serra, 1994) presented the users with a 3D scene that they could manipulate
by using the two tool handles; Hinckley (Hinckley et al., 1998, 1994) proposed a method

7http://www.xbox.com/en-US/kinect

16

http://www.xbox.com/en-US/kinect

2.4 Tangible Interaction

of MRI visualization for neurosurgical purposes in which the user specified a cutting
plane by manipulating a doll’s head and a cutting plane prop in free space. This field
would rapidly become the origin of Tangible Interaction (see Section 2.4).

Recently, successful consumer-level devices for bimanual gestural interaction have ap-
peared. Leap Motion Controller8 attempts to address this type of interaction by tracking
hands and fingers close to the structured light sensor9, usually placed near the screen.

Aside from camera-based approaches, using accelerometers and gyroscopes to track the
body movement has been a common strategy. A notable example is the Wii Remote10,
which introduced motion-based interaction to the general public in late 2006, triggering
many studies and applications in the academic world, such as (Schlömer et al., 2008;
Vlaming et al., 2008; Lee et al., 2008). A similar use case has been being used for a
while in smartphones, recently with better precision by the use of sensor fusion techniques
(Sachs, 2010).

An specific area where gestural interaction and bimanuality has an important role is
music performing. Music performing and improvisation is a field that often can require
many dimensions of control of the instrument, and thus the instruments tend to take
advantage of the directness and abilities of the hands and body movement. Even the
strangely popular Theremin, the first fully functional electronic musical instrument, was
controlled by moving the hands in the air.

Gestural interaction and bimanuality in music performance can be found in custom
hand controllers such as in The Hands (Waisvisz, 1985), profiting from joysticks and
other standard computer peripherals (Jordà, 2002; Arfib and Kessous, 2002) or even
using special globes for per-finger control (Kessous and Arfib, 2003).

2.4 Tangible Interaction

In 1995, Buxton together with then PhD students George W. Fitzmaurice and Iroshi
Ishii, had already demonstrated how the sensing of the identity, location and rotation
of multiple physical devices on a digital desktop display, could be used for controlling
graphics using both hands (Bier et al., 1993; Kabbash et al., 1994). This work introduced
the notion of graspable interfaces, formalized in Bricks (Fitzmaurice et al., 1995), which

8https://www.leapmotion.com/product
9Although it seems that the technology used by Leap Motion remains undisclosed, external observa-
tion indicates that infrared structured ligt is the base of their solution.

10It seems that Nintendo does not provide an official website to this product, so you can instead go to
Wikipedia: https://en.wikipedia.org/wiki/Wii_Remote

17

https://www.leapmotion.com/product
https://en.wikipedia.org/wiki/Wii_Remote

2 Introduction

Figure 2.1: Different operations of physical manipulation of digital elements in bricks,
as shown in (Fitzmaurice et al., 1995)

were to become two years later “tangible interfaces”.

In Bricks, Fitzmaurice presents a system where wooden blocks are placed on top of
an horizontal display (ActiveDesk) and uses them to control virtual elements. By
moving the bricks over the display, the coupled virtual elements would be transformed
accordingly. Using a single brick would result in translation and rotation, while using two
or more would allow zoom, pivotal rotation and other non homogeneous transformations
(see Figure 2.1). Many of the created interaction techniques are the ones used nowadays
in multi-touch devices.

Two years later, Hiroshi Ishii at the MIT Media Lab coined the term tangible user
interface in 1997 (Ishii and Ullmer, 1997), although several related research and imple-
mentations predate this concept. Ishii picked the abacus as the source of inspiration and
the ultimate tangible interaction metaphor because, unlike pocket calculators or com-
puters, in the abacus, input and output components coincide and arithmetical operations
are accomplished by the direct manipulation of the results. Following this captivating
idea, Ishii envisioned TUIs as interfaces meant to augment the real physical world by
coupling digital information to everyday physical objects and environments, literally al-
lowing users to grasp data with their hands, thus fusing the representation and control
of digital data and operations with physical artifacts. Instead of having separated phys-

18

2.4 Tangible Interaction

control rep-d

model

control view

model

input outputphysical

digital

rep-p

physwically represented
(graspable) digital information

non-graspable representation
of digital information

GUI: MVC model TUI: MCRpd model

Figure 2.2: GUI and TUI interaction models according to Ullmer and Ishii in (Ullmer
and Ishii, 2000).

ical controls and digital data and logic, with separated input and output, tangible user
interfaces created a more tangible and coupled physical and digital representation and
control, while leaving only data as purely digital (see figure 2.2).

One of the inspirational examples identified by Ishii was the Marble Answering Machine
conceived by Durrel Bishop in 1992 (Bishop, 2009). In this never implemented concept,
physical marbles were attached to digital information (phone messages). When the
answering machine registered a new message it released the corresponding marble. When
the user wanted to listen to the pending messages, she only had to take each marble
and introduce it into a slot. Although the marbles did not carry any digital information
in them, they served as a handle to reach to it, and physical actions could have digital
consequences.

In a way, tangible interaction can be seen as an extension and deepening of the concept
of “direct manipulation”. With GUIs, users interact with digital information by selecting
graphic representations (icons, windows, etc.) with pointing devices, whereas tangible
user interfaces combine control and representation in a single physical device (Ullmer
and Ishii, 2000), emphasizing tangibility and materiality, physical embodiment of data,
bodily interaction, and the embedding of systems in real spaces and contexts.

Although WIMP concepts are widely used in Ishii’s seminal paper, posterior works,
such as Urp (Underkoffler and Ishii, 1999), try to avoid them as much as possible, while
maintaining their direct manipulation flavor. Urp was an urban planning workbench,
where buildings are represented by three-dimensional physical miniatures on an horizon-
tal surface while the system simulates their shadows or sun reflections in real time. The
manipulation of the data is purely physical, and the resulting image takes physical and

19

2 Introduction

digital part, as the buildings are in scale.

Ishii’s vision in tangible bits presented various interface possibilities other than objects-
on-surfaces-based (i.e. metaDESK and transBOARD) ones. Ambient displays are one
example, now often regarded as a separated field, present information to the individual
in the background so it is unconsciously processed. An inspirational example mentioned
by Ishii is Live Wire (originally Dangling String) (Weiser and Brown, 1996), a plastic
spaghetti hanging from the ceiling, where an electric motor connected to the Ethernet
network makes it to oscillate every time a packet is detected. The result is that when
the network is calmed, the string moves every phew seconds, while when busy it starts
making a distinctive noise because of its movement, proportional to the business of the
network. Inhabitants have then an ambient measure to be aware of the network load.

Another interface possibility, and probably the most identified with the tangible interac-
tion field, is the one suggested by the Marble Answering Machine, objects with embedded
input and output capabilities. Examples could be objects that connect between them to
create combined high-level behaviors such as Flow Blocks (Zuckerman et al., 2005), a se-
ries of peaces to explore causality, or AlgoBlock (Suzuki and Kato, 1993), a programming
language made of connectible blocks as instructions; or objects that can be interacted
by manipulating their shape or part configuration, such as Topobo (Raffle et al., 2004),
a robotic creature construction kit with kinetic memory, or roBlocks (Schweikardt and
Gross, 2006), a modular robot constrction kit where the physical modules are also logical
functions.

2.4.1 Tangible and tabletop

Tabletop interfaces are a kind of tangible user interface. “Tabletop” relates to its phys-
ical shape and proportions: horizontal surface of the height and size of a table. Any
computing system that uses a table-shaped interface could be described as a tabletop.
Usually, the visual output is projected or displayed on the surface, while allowing touch
interaction with fingers and other instruments as the input.

In Tangible Bits, Ishii already describes tabletop-like interfaces: metaDESK, and Bricks
was described even earlier. In fact, ActiveDesk, the platform where bricks was built
upon, is one of the first tabletop systems that combined a sensing camera and a projector
(Buxton, 1997).

Additionally, physical objects can be placed on the surface as part of the interaction. In
this case we can refer to them as tangible tabletop interfaces, and the tangible tabletop
interaction field (or surface computing, in reference to Microsoft Surface, a commercially

20

2.4 Tangible Interaction

available tangible tabletop device). We could say that the first tabletop systems, such
as ActiveDesk, were tangible tabletop as they were using physical objects. However, they
where not because of a preference for the concept, but because of the limitation of touch
sensing technologies, which were unable to recognize direct hand touch to the interface.

Urp is, instead, one of the earliest Tangible Tabletop applications which unveils and
suggests its potential. Developed as a town planning aid in the late 1990s at the MIT
Media Lab (Ben-Joseph et al., 2001), in Urp, various users can analyze in real time the
pros and cons of different urban layouts by arranging models of buildings on the surface
of an interactive table, which represents the plan of a town or a district. The surface
provides important information, such as building shadows at different times of the day
(see Figure 2.3).

Urp is executed on an augmented table with a projector and a camera pointed at the
surface from above. This system permits the detection of changes in the position of the
physical objects on the table and also projects visual information concerning the surface.
Other elements can be included, such as a clock to control the time of day in the system.
Urp detects any changes made in real time and projects shadows according to the time
of day. All these properties could obviously be achieved with the usual mouse-controlled
software on a conventional screen, but the interest of this simple prototype does not
lie in its capacity to calculate and simulate shadows, but rather in the way in which
information can be collectively manipulated, directly and intuitively. This example,
although quite simple, already unveils some of the most important benefits of tabletop
interaction: collaboration, naturalness, and directness.

We can see how, with the combination of the tracking of control objects on the table
with projection techniques that do convert the table into a flat screening surface, these
systems can fulfill the seminal ideal of tangible interaction, of “adding digital information
to everyday physical objects”, allowing digital entities to coexist as fully digital non-
physical form and as shared digital-physical form.

We can think of tangible tabletops as a pragmatic version of tangible interfaces. The
tracking of objects’ state is easy to do because of its limits, as they are usually rigid and
therefore the only parameters to be recognized are position and orientation, which can
be tracked with video processing methods. It also facilitates their digital enhancement
by projecting the image on it or around it (as auras), instead of having to physically
enhance them by embedding electronics and display mechanisms. Also, because of the
transitoriness of this visual enhancing technique, the physical objects can adopt many
different roles and become generic; this way each application can define their role at any

21

2 Introduction

Figure 2.3: Urp (image from (Underkoffler and Ishii, 1999))

time. By gaining leverage by using those pragmatic approaches, we can get a versatile,
affordable tangible interaction solution.
It should be stressed, though, that not all existing tabletop technologies allow dual
touch-object interaction, being very common the ones only accepting multi-touch input.
To be able to place objects on a surface, the tabletop must be horizontally oriented, not
tilted. In that sense, some studies analyze the benefits and disadvantages of tilted versus
horizontal surfaces (for example (Morris et al., 2008)), suggesting that in many individual
use cases, if tangible objects where not to be supported, tilted interfaces (like traditional
architect’s tables) seem to be more engaging and feel more natural (Muller-Tomfelde
et al., 2008).
The “popularization” of multi-touch tabletop interfaces came with the Frustrated Total
Internal Reflection (FTIR) technique by Han (2005), an inexpensive and very powerful
method to track multiple fingers on a translucent surface that finished with the original
need of using physical elements to interact with the surface. This method providing
the possibility of using the fingers directly to interact, accompanied by a very inspiring
talk11 and demos12, were probably the origin of the multi-touch culture we have seen
from DIY and commercial devices.
In contrast, a similar technique called Diffused Illumination (DI) (Schöning et al., 2008),
although less reliable than FTIR when tracking touching fingers, allows the recogni-
tion of fiducial markers, which can be sticked into objects, allowing tangible tabletop
11http://www.ted.com/talks/jeff_han_demos_his_breakthrough_touchscreen
12https://www.youtube.com/watch?v=EiS-W9aeG0s

22

http://www.ted.com/talks/jeff_han_demos_his_breakthrough_touchscreen
https://www.youtube.com/watch?v=EiS-W9aeG0s

2.5 Making tabletops useful

interaction. However, the improvements on the related hardware and software have
progressively decreased the performance difference between the two technologies. For a
detailed description of a complete DI system see Section 3.4.
Available commercial and noncommercial tabletop platforms (and applications) are re-
viewed in Section 3.2.

2.5 Making tabletops useful

In the 1 chapter we introduced the motivation of our research, that we intend to make
tangible tabletop devices useful to the population, and also exposed two successful cases
of making a computing platform useful and widely used, PC and Multi-touch personal
devices. Here we analyze the positive factors that contributed to their success, and
compare them to the current situation of tangible tabletops.

Price and Availability constitutes one of the major factors for the popularization of a
product or a technology. Obviously the widespread acquisition of a device will
be limited by its prize and other market factors such as expectation, advertising,
availability, etc. The PC has been historically decreasing prices until a point
where buying a PC represents a expenditure equivalent of a fraction of the average
monthly income. Personal multi-touch devices have been lowering prices too and
now it is difficult to see new cheaper non-multi-touch cellphones being marketed.
In the case of tangible tabletop devices, the situation has been slowly improving.
Since the first examples of tabletop computing (or surface computing) the price
has been decreasing, but it is still fairly expensive. Latest developments by Mi-
crosoft and Samsung (Pixelsense13, based on (Hodges et al., 2007)) led to a
mass-produced device that would have to theoretically drop the prices, by using a
different embedded technology.

Affordances and Ergonomics would define if the device is capable of being used in
situations or in ways not possible before. PCs base their design on focused single-
user single-task interaction, making it valuable for high-concentration tasks such
as productivity applications.
Multi-touch personal devices are designed to be portable and small. Their size
and lack of an ergonomically correct keyboard makes them unsuitable for office
applications, but very useful to perform some tasks away from the PC. Their
mobility allows users to perform tasks in places and situations that before were

13http://www.pixelsense.com

23

http://www.pixelsense.com

2 Introduction

not possible. Also importantly enough, its multi-touch interaction, extremely tied
to direct manipulation, is direct and expressive enough to be attractive for real-
time artistic applications such as musical or gaming ones.

Tangible tabletop devices differ from the PC and multi-touch personal devices
in its big size and focus on multi-user settings. We will see the benefits of such
interfaces afterwards in Section 3.1, but let us just summarize that they are known
to encourage creativity and expression (Catalá et al., 2012) as well as collaboration
(Hornecker and Buur, 2006). Some of those properties are totally absent if not
penalized on the PC and multi-touch personal devices.

Application frameworks that take into account the aforementioned affordances are
needed in order to create applications that can be used in consonance with the
physical device’s abilities. The WIMP-based frameworks have been shaping the
way applications behave for the whole history of PCs, allowing them to correctly
use the single focus mechanism, understand the double-click or to present pull-
down menus. The first wave of tablet PC devices still used those frameworks,
totally ignorant of their ergonomics and affordances, different from PCs, and that
was surely a factor that prevented its success.

Multi-touch personal devices also have their application frameworks that make it
easy to use the default gestures of the device, use its sensors and other features.
By using these frameworks and not WIMP oriented ones, the applications are
prepared to behave well and to profit from all device affordances.

There are many application frameworks in tangible tabletop, although there is not
a clearly defined set of the features that they should implement. Notable missing
parts are facilities for creating new complex and multiuser gestures.

Third party useful applications are a very important factor for success. The creators
of a general computing device or system are not able to predict all the possible
applications of it and, therefore, if they create a closed system with a set of appli-
cations that should cover all the needs of the users, the device will become useless
for many users. The PC was already created with the philosophy of allowing third
party apps. This was not the case of the personal device market; for many years
personal devices such as cellphones, address manager, digital phone books, digital
personal assistants existed with a limited set of functions and applications set by
the builder.

This factor is indeed so important that the path of multi-touch personal devices
to distributed third party applications, through a centralized catalog, proved to be

24

2.5 Making tabletops useful

so successful that is being copied over other devices, such as PCs.
The temptation of creating a closed complete system that supports many tasks that
are foreseen by the developers can be seen in tangible tabletops, although most
of the systems in the market are still designed and sold as a single application
appliance.
The ability to support third party applications that make the best from the device
and makes it truly useful to the users depends at much extent on having good and
coherent application frameworks.

Multi-Application systems, or operating systems in general, windowing systems in
PC, are the last part of this puzzle for allowing the device to be useful. WIMP
systems allowed multiple applications to be running in parallel, and being seen
at the same time by placing its interface inside windows that would not occupy
the whole screen, they provided drag-and-drop interaction for inter-application
communication, and many other capabilities that made applications work well
together. In multi-touch personal devices, the designers realized that small screens
did not allow having multiple applications showing their state, and forced them to
spread to the whole screen.
While some systems exist for tangible tabletop devices, they usually make the
assumption of using either the full-screen approach, well suited for small screens,
or WIMP derivatives, well suited to vertical single-user screens.
The application management system will define the way applications can cooper-
ate, the way users will relate to applications and their capabilities. Its impact on
third party applications behavior and design as well as on the application frame-
works is extremely important. The lack of a well defined management system (or
operating system, or windowing system) can be fatal for the appearance of good
frameworks and applications.

With the goal of making a useful device from tangible tabletops in mind, we approach
the solution by attacking the several factors aforementioned.

• In the first part we explore the affordances of this type of devices.
• Then we focus on the frameworks we need for developers to make use of those

affordances.
• Finally we approach the system problem, by trying not to make the same mistakes

of previous attempts.
Only by addressing these three aspects we can be sure that no other obstacles lie before
these devices road to success.

25

2 Introduction

26

3 Exploring tabletops’ distinctive
affordances

Tabletops provide some affordances that emerge from their shape, size and
interaction capabilities, differing from those provided by PCs. Learning how
applications can exploit them will allow application creators to shape their
programs so that they are most useful to the users.

3.1 Affordances of tabletops

Since the conception of tangible tabletops by Ishii and Ullmer (1997), researchers have
been intuitively assigning positive properties to this type of interface. The fact that
tangible and tabletop interaction substantially changed the way people could physically
relate to computers unharnessed the imagination of those that identified the original
PCs restrictions as the main contributor to their limitations. Claims about its effect
on learning, collaboration, creativity were rapidly assumed from informal evaluation
(Marshall et al., 2007). Formal user studies have been, since then, sorting out the real
affordances of these types of interfaces, which we can classify in three different types:

• Simultaneous input: the ones related to the ability of multiple simultaneous input
points.

• Collaboration: representing the effects of allowing multiple users to work on the
same goal.

• Physicality: the ones related to the use of real physical objects and devices as input
as opposed to using virtual objects, in big interactive surfaces.

3.1.1 Simultaneous input

Several of the tabletop prototypes mentioned in Chapter 2 were, in fact, tables that
often allowed their users to interact in two complementary ways: touching the table’s

27

3 Exploring tabletops’ distinctive affordances

surface directly, and manipulating specially configured real physical objects on its sur-
face. Typically, this type of interface allows more than one input event to enter the
system at the same time. Instead of restricting input to an ordered sequence of events
(click, click, double click, etc.), any action is possible at any time and position, by one
or several simultaneous users.

This has two different consequences. Firstly, interaction by using multiple input events
simultaneously (such as in multi-touch) allows the appearance of rich gestures. In fact,
multi-touch interaction is arguably the most commercially successful capability of hor-
izontal surfaces. And the “pinch-zoom” technique is only one example of hundreds of
possibilities. Apart of multi-touch, having multiple simultaneous input points can also
provide means for bimanual interaction, promoting a richer gesture vocabulary (Fitzmau-
rice et al., 1995; Fitzmaurice, 1996). Also, rich gestures as such, lighten the cognitive
load and help in the thinking process while taking advantage of kinesthetic memory
(Shaer and Hornecker, 2010).

Secondly, multiple simultaneous input enables multi-user interaction, in form of multi-
user gestures and collaboration.

3.1.2 Collaboration

The social affordances associated with tables directly encourage concepts such as “social
interaction and collaboration”(Hornecker and Buur, 2006) or “ludic interaction” (Gaver
et al., 2004). Many researchers do, in fact, believe that the principal value of tangible
interfaces may lie in their potential for facilitating several kinds of collaborative activities
that are not possible or poorly supported by single user technologies (Marshall et al.,
2007). A research community has been growing around these technologies and the
concept of “shareable interfaces”, a generic term that refers to technologies that are
specifically designed to support physically co-located and co-present groups to work
together on and around the same content. With vast horizontal table-shaped screens,
tabletops seem to be a a paradigmatic example of a “shareable interface”.

Until recently, most research on computer-supported cooperative work (CSCW, a term
coined by Irene Greif and Paul M. Cashman in 1984 (Bannon, 1993)), has oftenly concen-
trated on remote collaboration. But, if we restrict ourselves to co-located collaboration,
the type of devices used (for example screens versus tables) seem to make a manifest
difference.

Rogers and Rodden (2004) have shown for example that screen-based systems inevitably
lead to asymmetries concerning the access and the creation of information. While these

28

3.1 Affordances of tabletops

systems make it possible for all participants to view the external representations being
displayed (for example, through using whiteboards and flipcharts), it is more difficult
for all group members to take part in creating or manipulating them. In particular, one
person can often dominate the interactions by monopolizing the keyboard, mouse, or
pen when creating and editing a document on a shared interactive whiteboard. Once a
person is established in a particular role (for example note-taker, mouse controller) she
or he tends to remain in it. Moreover, those not in control of the input device, can find
it more difficult to get their suggestions and ideas across.

Rogers and Rodden (2004) have done some user studies around interactive tables, for
learning the new opportunities for collaborative decision-making that shared interactive
tabletops can provide. They conclude that collaborative decision-making can indeed be
promoted by providing group members with equal access and direct interaction with
digital information, displayed on an interactive table surface. They observe that these
interfaces also foment discussion, and that the sharing of ideas and inviting others to
take a turn, to respond, to confirm, or to participate, all tended to happen at the same
time the participants were interacting with the table, supporting their opinions with
gestures and with the table responses.

Some tabletop implementations have even strengthened this collaborative aspect with
idiosyncratic design decisions. Such is the case of the collaborative tabletop electronic
music instrument Reactable (Jordà et al., 2007)(see more in Sections 3.2 and 3.4) or
the Personal Digital Historian System (Shen et al., 2003), all of which are based on
circular tables and use radial symmetry, for promoting collaboration and eliminating
head position, leading voices, or privileged points of view and control.

Sharing control in collaboration

All this collaboration with tabletops can be seen as acts of sharing digital data between
users, for example in the form of photo collections (for example (Shen et al., 2003;
Crabtree et al., 2004)), which probably constitutes nowadays, together with map navi-
gation, the most popular demo for tabletop prototypes (for example Microsoft Surface).
Communication in general is definitely about sharing data (Shannon, 2001), but it is
not about sharing documents or files—it is about sharing real-time, on-the-fly-generated
data.

This idea of sharing control versus sharing data has been becoming more frequent on
tabletops. One clear example is Reactable (Jordà et al., 2007), which is better described
as a contraption for sharing real-time control over computational actions, rather than

29

3 Exploring tabletops’ distinctive affordances

for sharing data among its users.

Although the idea of sharing control can be strongly linked to music performance, tan-
gible applications with a similar philosophy are also becoming more frequent in non
performance-related domains. The Patcher (Fernaeus and Tholander, 2006) presents a
set of tangible resources for children in which tangible artifacts are better understood as
resources for shared activity rather than as representations of shared information. Fer-
naeus et al. (2008) identify a ”practice turn” in tangible interaction and HCI in general,
which is moving from a data-centric view of interaction to one that focuses on repre-
sentational forms as resources for action. Instead of relying on the transmission and
sharing of data, the action-centric perspective is looking for solutions that emphasize
user control, creativity, and social action with interactive tools.

No matter how influential this paradigm shift may be felt in a near future, the truth
is that it is hard to think on shared control when models and inspirational sources
come from WIMP based, single-user interactive computer applications. Much of the
efforts taken until today in the field of CSCW have been in that direction, trying to
convert single-user applications into multi-user collaborative applications. But sequential
interaction has proved to be too inflexible for collaborative work requiring concurrent
and free interactions (Begole et al., 1999; Stefik et al., 1987; Olson et al., 1992; Sun et al.,
2006).

3.1.3 Physicality

Independently to the capability of having simultaneous input actions, and providing a
big and shareable interface that drives the previous affordances, the simple fact that
table-shaped interfaces have the ability to literally support physical items on them has
many consequences. Users can interact with objects of various volumes, shapes, and
weights, and when their position and orientation is identified and tracked by the sys-
tem, the potential bandwidth and richness of the interaction goes thus far beyond the
simple idea of multi-touch. While interacting with the fingers still belongs to the idea
of pointing devices, interacting with physical objects can take us much farther. Such
objects can represent abstract concepts or real entities. They can relate to other objects
on the surface. They can be moved and turned around on the table surface, and all these
spatial changes can affect their internal properties and their relationships with neigh-
boring objects. They can even add metaphoric parameters (e.g. size, texture, weight...
(Hurtienne et al., 2009)).

Objects can have different purposes and meanings which can be used to help the in-

30

3.1 Affordances of tabletops

teraction. Different taxonomies have been proposed in order to classify the objects;
Underkoffler and Ishii (1999) classify objects depending on whether they are more as-
sociated with data or with actions (pure object, attribute, noun, verb, reconfigurable
tool). Holmquist et al. (1999); Ullmer et al. (2005) distinguishes between tools, tokens
and containers, depending on whether if they can manipulate, access or carry informa-
tion.

In particular it seems that the use of those objects can have many benefits to problem
solving processes:

• Epistemic actions (Kirsh and Maglio, 1994), those physical manipulations intended
to understand the task or problem rather than to interact with the system, are
then possible with those objects, thus facilitating mental work and helping problem
solving (Shaer and Hornecker, 2010).

• Problem solving can be also empowered by physical constrains (Shaer and Hor-
necker, 2010), which can be possible with objects in tabletops. Physical constrains
are confining regions that prevent objects from moving freely, limiting the degrees
of freedom of their movement, preventing object positions that would represent
unacceptable problem solutions or situations (Ullmer et al., 2005).

• Tangible representations of a problem may contribute to problem solving and plan-
ning (Shaer and Hornecker, 2010). This is specially true when the physical prop-
erties of the manipulated objects map exactly the ones of the problem to solve. A
very good example is Urp (Underkoffler and Ishii, 1999), using building miniatures
to plan an urbanization while seeing the consequences of the planning (more in
Sections 2.4 and 2.4.1).

• Tangible tabletops seem to facilitate divergent thinking and creative thought, an
important factor in problem solving processes (Catalá et al., 2012).

Additionally, to support tangible interactive objects, vast screens favor real-time, mul-
tidimensional as well as explorative interaction, which makes them especially suited for
both novice and expert users (Jordà, 2008). They also permit spatial multiplexing, al-
lowing for a more direct and fast interaction (Fitzmaurice, 1996) while leveraging the
cognitive load (Shaer and Hornecker, 2010). Also, the visual feedback possibilities of this
type of interfaces, make them ideal for understanding and monitoring complex mecha-
nisms, such as the several simultaneous musical processes that can take place in a digital
system for music performance (Jordà, 2003).

31

3 Exploring tabletops’ distinctive affordances

3.2 Existing tabletop applications

Most of the end-user applications in tabletops belong to several tabletop application
ecosystems, built around the different hardware platforms. Those platforms are better
known than the applications they may hold and run (and that itself could be a sign of the
immaturity of the application market). The most disseminated devices are undoubtedly
the ones by Microsoft: Microsoft Surface1 and PixelSense2 (see Figure 3.1). These are
conceived as a platform to allow third party applications to be run in it: they have
a tabletop-ready application management environment working on top of a windows
desktop that allows users to instantiate and change applications from the available ones,
only one being active. They also offer a set of basic applications and samples (not
fully working concepts), but the market is composed mainly by 3rd party applications,
which users need to buy and/or download and install by themselves in the underlying
desktop environment. As opposed to Microsoft Surface (tablet and desktop) ecosystem3,
a centralized application distribution system is still not available for tabletops, a clear
sign of the current weakness of the market.

Nonetheless, many software development companies specialize on tabletop applications
for Microsoft products. Of course, it is impossible to chart every commercial application
offered by a third party as there is not a centralized list, but a quick search for (commer-
cialized on-line) applications results in a profile of the usual application categories that
are offered: Point-of-Sale kiosks; collection visualization (such as documents, pictures
or videos); casual gaming and music; education and scientific visualization. None of
the activities from these software applications seem to center on the collaboration or on
leveraging the affordances to solve complex domain specific problems, as one may think
it would be its main application.

SMART table4 is another of the commercially available tabletop systems that combines
hardware and software in commercialization. Its primary focus is education: the embed-
ded software supports loading learning activities designed by SMART and customized
by teachers. A runtime execution environment is provided to support 3rd party appli-
cations, but there is not a centralized database of 3rd party applications or any other
reference to any.

DiamondTouch5 is commercialized as tabletop hardware with some software tools in-
1http://www.microsoft.com/en-us/pixelsense/supportlinks10.aspx
2http://www.pixelsense.com
3http://windows.microsoft.com/en-us/windows-8/apps
4http://education.smarttech.com/en/products/smart-table
5http://www.circletwelve.com/products/diamondtouch.html

32

http://www.microsoft.com/en-us/pixelsense/supportlinks10.aspx
http://www.pixelsense.com
http://windows.microsoft.com/en-us/windows-8/apps
http://education.smarttech.com/en/products/smart-table
http://www.circletwelve.com/products/diamondtouch.html

3.2 Existing tabletop applications

Figure 3.1: Microsoft Surface (left) and PixelSense (right).

Figure 3.2: SMART table

33

3 Exploring tabletops’ distinctive affordances

tended to use desktop applications emulating a mouse, and an SDK to develop custom
applications on it. In their website there are no references to any tabletop application,
own or third party.
As an exception to this platform-centric focus, although many commercial tabletop de-
vices have existed for many years now (DiamondTouch first publication appeared in 2001,
for instance), there are arguably nearly no commercially successful applications. As a
sole example of a commercially successful tabletop application there is the Reactable
(Jordà et al., 2005), a musical instrument that is sold as a hardware and software bun-
dle6.
The Reactable is a musical instrument inspired in modular music synthesizers. A circular
tabletop surface (for a more complete explanation of Reactable hardware see Section 3.4)
allows performers to place objects that either make sound, transform sound or control
other objects or global parameters. By placing these objects near each other, data and
audio connections are formed, creating a mesh that produces music and sound. Interac-
tion with fingers allows manipulating the audio stream as well as modifying parameters
of the objects (see Figure 3.4).
In fact, the Reactable is also the only commercial application known to the author
to use custom tabletop hardware, very popular among low-budget or custom projects,
thanks to the various software tools and techniques, large knowledge bases of resources
and many easy-to-follow tutorials collected and publicly available to the DIY community
(Schöning et al., 2008). Particularly, reacTIVision (Bencina et al., 2005) and Community
Core Vision (CCV)7 offer very easy to use finger and fiducial tracking for optical based
tabletop projects. Its very difficult to keep track of those projects because of its Do It
Yourself nature.
In an academic environment, many tabletop applications are presented in conferences
every year. If we search for all publications introducing a tabletop application in the
most related conferences Tangible and Embedded Interaction (TEI), Tabletop
(tabletop), and Interactive Tables and Surfaces (ITS) since their creation un-
til 2013 (see Appendix B for a complete list), we can see that Microsoft Surface and
PixelSense are becoming popular choices, while a slightly decreasing amount of custom
solutions (using reacTIVision or CCV) is still present (see Figure 3.5).
The types of tabletop application presented on those conferences (see Figure 3.6) favor
in the education setting, being a big part of the application developing effort. Tools
(common, professional, coordination) represent another big part of them, believing in

6Reactable products web page http://reactable.com/products/
7http://ccv.nuigroup.com/

34

http://reactable.com/products/
http://ccv.nuigroup.com/

3.2 Existing tabletop applications

Figure 3.3: DiamondTouch

Figure 3.4: The Reactable. Photo by Daniel Williams from NYC, USA.

35

3 Exploring tabletops’ distinctive affordances

the impact of tabletops on current processes, in order to increase their performance or
capability.

3.3 The presented applications

Education is indeed a very common approximation vector not only for commercial and
research tabletop applications but for TUI in general. There have been a number of
works focused on studying TUIs and their effects on learning (especially in children) in
recent years. Marshall (2007) categorizes learning activities with TUIs as two types:
exploratory and expressive. These two categories precisely relate to the approaches we
explored in order to exploit tabletops affordances. TurTan (see Section 3.5) focuses in an
eminently expressive activity: graphical programming, in an exploratory way. By using
objects to represent instructions, users create programs by creating a sequence of objects,
which can be modified in real time while continuously seeing the graphical result; and,
by manipulating several objects simultaneously, they can even be collaboratively edited
by several people at the same time.

Data exploration and discovery (very present in apps such as map and collection brows-
ing) is addressed by SongExplorer (see Section 3.6), although not in an educational
context. It presents a large collection of songs as a two-dimensional map that can be
browsed with regular map-browsing gestures with the intent to help users to discover
new, interesting music. This map is constructed by using the analyzed contents of the
songs and placing similar songs close together, and visualized in ways that enhance their
high-level detected qualities (such as the mood or danceability of the music). This strat-
egy makes use of the everyday orientation and map interpretation skills to explore a
completely different space: music.

3.4 Hardware Setup

Before starting to describe the tabletop applications we created to explore those affor-
dances, we will briefly introduce the hardware platform that we used, common in all the
presented projects in this thesis.

Analyzing and improving hardware platforms for tabletop computing is outside the scope
of this thesis. Instead of building a custom tabletop, a Reactable has been used for
convenience. This setup has been used over the years in many projects and has proved
to be reliable enough to simply focus on the software side.

36

3.4 Hardware Setup

2008 2009 2010 2011 2012 2013
0

2

4

6

8

10

12

14

CCV
reacTIVision
DiamondTouch
PixelSense
Microsoft surface
SMART

year

Figure 3.5: Tabletop technologies and devices used in applications presented at TEI,
ITS and tabletop conferences.

education/learning
entertainment
real time control
musical instrument
common tool
professional tool
coordination tool

Figure 3.6: Types of tabletop applications presented at TEI, ITS and tabletop con-
ferences.

37

3 Exploring tabletops’ distinctive affordances

Figure 3.7: Hardware setup

A diagram shown in Figure 3.7 shows the main elements and processes of a Reactable
device. It consists of a round horizontal surface of a translucent material seated into
a structure, infrared light emitters and camera, and a video projector, which are all
underneath the surface. It is about 90cm in diameter, and roughly the same in height.

The round shape of the surface is specially designed to promote collaboration, by erasing
any possible privileged orientation and so any predominant role (as we briefly discussed
in Section 3.1.2). This was a requirement of the Reactable instrument, meant for col-
laborative musical performance (Jordà et al., 2005; Jordà, 2008), which also has its
consequences on the design of any application running on the device: apart of having
to plan for a circular interface, the lack of a predominant position constrains to the
appearance of text and other elements that have a correct orientation.

The displayed image is projected from underneath with the projector, optionally using a
mirror to maximize the distance and thus the projected area. As the surface is translu-
cent it serves as the projector screen, displaying the image. The distortion created by
the projection (and aggravated by the mirror) has to be corrected by software (see 4.1.1).

The technique used for finger and object detection is Diffused Illumination (Schöning
et al., 2008) (see Section 2.4.1): infrared (IR) LED lamps8 illuminate the elements

8The design of the lamps has evolved over time, from LED matrices to high power SMD LEDs

38

3.4 Hardware Setup

Figure 3.8: reacTIVision fiducial markers

beyond the surface, while an IR camera records the image as seen through the surface.
The infrared spectrum is used instead of visible to avoid interferences with the projected
image.

Because of the translucent diffused surface, only objects that are close enough (∼ 1cm)
can be seen in the camera’s image, while more distant ones remain invisible, so the
tracking software can detect objects only in contact with the surface and not hovering.
This is very useful to detect finger contact, as fingers touching the surface appear as
small circles while hiding the rest of the hand.

ReacTIVision (Bencina et al., 2005) is used to track the fingers and objects using the
image from the camera. Objects must be tagged with special fiducial markers in order to
be recognized. Those are configurable and can have arbitrary sizes and shapes, though
the set already provided with the software is usually convenient (see Figure 3.8). Finger
interaction, in contrast, does not need any additional marker or apparatus in order to
be detected.

ReacTIVision processes the image from the camera and sends the identified finger and
object information to the actual program using the TUIO protocol (Kaltenbrunner et al.,
2005), which is the de facto standard in low level gesture input protocol, based on Open
Sound Control (OSC) over UDP, and specifically designed to simplify the communication
between processes in a tangible user interfaces environment. This way the tabletop
application does not have to implement any tracking mechanism and will receive all
processed events detected on the surface just by implementing a TUIO client. The

39

3 Exploring tabletops’ distinctive affordances

Figure 3.9: Tracking setup

whole process is pictured in Figure 3.9.

3.5 TurTan, a tangible tabletop programming language for
education

One of the major research targets involving tabletops and tangibles is enhancing the
education process. The possibility of affordances such as expressivity, exploration and
collaboration, making the tangible version of a particular activity better suited for learn-
ing, is particularly interesting (Shaer and Hornecker, 2010). In parallel, the challenge
of creating a tabletop-based tangible programming language was particularly appealing,
as we envisaged that the directness of tangible interaction would essentially change the
way users would relate to the activity, into a more exploratory one.

With TurTan (Gallardo et al., 2008) we approached these two big subjects: tangible
programming languages and tabletops in a learning context.

TurTan implements a tangible programming toy language (Ledgard, 1971), especially
conceived for children and non-programmers, which may help to introduce and explore
basic programming concepts in a playful, enjoyable and creative way. It is inspired in
Logo (Feurzeig et al., 1969), and thus designed for performing turtle geometry (Abelson
and Di Sessa, 1986). As the original Logo language, one of the TurTan design goals
was to use it for teaching some programming concepts, mainly to children. Unlike the

40

3.5 TurTan, a tangible tabletop programming language for education

original Logo, TurTan is totally controllable and manipulable in real-time, meaning that
there is no distinction between coding and running the program, everything happening
simultaneously. In that sense it could also be considered as a Dynamic programming
language.

3.5.1 TUI in learning

Historically, children have been encouraged to play with physical objects (individually
and collaboratively) such as building blocks, shape puzzles and jigsaws to learn a variety
of skills. When Friedrich Froebel established the first kindergarten in 1837, he used
the technology of the time to develop a set of toys (known as “Froebel’s gifts”) to help
young children to learn basic concepts such as number, size, shape, and color through
their manipulation (Brosterman and Togashi, 1997).

Later, Montessori (1912) observed that young children were attracted to and sponta-
neously used sensory development apparatus independently, repeatedly and with deep
concentration. While Froebel’s theory encouraged children to do more practical work
and directly use materials that exist in the real world, Montessori’s method supported
the belief that children should follow their inner nature, and learn by following an au-
tonomous development (Zuckerman et al., 2005).

There is significant research evidence supporting that physical action is important in
learning. Piaget and Bruner showed that children can often solve problems when given
concrete materials to work with before they can solve them symbolically (Bruner, 1966;
Piaget, 1953). Constructivism, introduced by Piaget, according to which individuals
learn from their experiences (Piaget and Jean, 1999), states that “knowledge and the
world are both constructed and interpreted through action, and mediated through sym-
bol use” (Ackermann, 2004). Piaget’s theory sees children as individuals capable of
rational thinking and approaching scientific reasoning.

Based on the foundation of Constructivism, Papert’s Constructionism (Papert and Harel,
1991), according to which children learn through making things, puts emphasis on pro-
viding children with technologies with which they get to be authors, rather than expe-
riencing worlds and situations that are pre-scripted, or absorbing facts provided by a
computer (Papert, 1993).

Papert’s constructionism lead to the invention of the Logo programming language (Feurzeig
et al., 1969). In Logo, a program consists of a series of instructions that “tell a virtual
turtle what to do”. This turtle, which is in fact a cursor, has a position and an orien-
tation and will leave a trace when moving. A series of instructions relate to different

41

3 Exploring tabletops’ distinctive affordances

available movements (such as FORWARD or RIGHT) while others relate to control flow
(such as REPEAT).
As an example, drawing a (50-units side) square in Logo could be done with REPEAT 4
[FORWARD 50 RIGHT 90]. The turtle would move 50 units while leaving a trace and
rotate to the right 90 degrees 4 times, leaving a square on the screen.
Resnick was the first to bridge these concepts by bringing the possibilities of digital
technologies and applying them to educational domain, coining the term ‘digital manip-
ulatives’, which he defines as familiar physical items with added computational power,
aimed at enhancing children’s learning (Resnick, 1998; Resnick et al., 1998). Zuckerman
et al. (2005) create their own categorization of learning by referring to the schools of
Froebel and Montessori, and to what they call “manipulatives”. They classify them as
two types: Froebel-inspired Manipulatives”(FiMs) and Montessori-inspired Manipula-
tives (MiMs). “FiMs are design materials, fostering modeling of real-world structures,
while MiMs foster modeling of more abstract structures”. Marshall (2007) categorizes
learning activities with TUIs as two types: exploratory and expressive, and argues that
TUIs “can help learners to make their ideas concrete and explicit, and once externalized,
they can reflect upon how well the model or representation reflects the real situation”.
Educational TUI example projects are the TICLE (Tangible Interfaces for Collabora-
tive Learning Environments) (Scarlatos, 2002), where children study basic math and
geometry concepts, or Read-It (Weevers et al., 2004), used to learn how to read.

3.5.2 Tangible programming languages

Many artist-oriented programming languages exist and are used everyday. Most of them
are still text based, like processing9 or actionscript10, while others such as MAX11 or
Pure Data12 use visual paradigms. All of them do still use mouse and keyboard to
program, and are more conceived for the creation of interactive art pieces, than for the
intrinsic exploration of programming creativity.
Beyond the PC, other languages use tangibles to program. This is the case of the
tangible programming systems Quetzal (Horn and Jacob, 2007) and AlgoBlock (Suzuki
and Kato, 1993): while the first uses objects to embody the meaning of the instructions
(tangibles are just representations), the second embeds electronics on the objects that
actually perform the commands themselves. However, these languages lack a direct real

9http://www.processing.org/
10https://www.adobe.com/devnet/actionscript.html
11http://cycling74.com/products/max/
12http://puredata.info/

42

http://www.processing.org/
https://www.adobe.com/devnet/actionscript.html
http://cycling74.com/products/max/
http://puredata.info/

3.5 TurTan, a tangible tabletop programming language for education

Tangible instructions

Instruction linksTurtle
Turtles trace
program's output

The virtual canvas
can be translated,
zoomed and rotated.

Figure 3.10: TurTan elements.

time control of their parameters, which makes fluid interaction between the programmer
and the program difficult to reach.
A more creative-oriented real-time programming language using tangibles is Task Blocks
(Terry, 2001), which consists of tangible instructions (named task blocks), physical con-
trols and physical connectors. Task Blocks is a language for data-processing in which
processing modules are programmed connecting task blocks together, while its param-
eters are controlled by physically wiring the controls to these blocks. This structure
allows to have real time control over the program’s parameters and structure.
Another example of tangible programming, is the Robot Park exhibit, which is a per-
manent installation at the Boston Museum of Science (Horn et al., 2009).

3.5.3 TurTan interaction mechanics

When beginning a session, TurTan users find an empty interactive surface, only with a
virtual turtle on the center. Various plastic objects are placed around this surface, tagged
with symbols representing their function. To program, users will have to place those
objects on the surface, creating a structure that will represent the program sequence.
The output of this program, in the form of vector graphics, will be continuously displayed
and updated in the background, in real time (see Figure 3.10). This is one of the key
components of TurTan as a dynamic programming language: there is no compiling or
executing steps, the result is instantaneous, so the manipulation of the program becomes
a real-time interactive activity.
While users create the program by placing and manipulating the objects, the graphical
output of the program can be manipulated using hand gestures. By using only one finger,
the graphical output can be translated; by using two fingers it can be rotated and scaled

43

3 Exploring tabletops’ distinctive affordances

Figure 3.11: Scale, rotate and translate with fingers.

(see Figure 3.11). These are already de facto standard gestures for 2D transformation
in multi-touch devices. When users want to return to an untransformed state, they can
remove all the objects off the surface, and the output will return to its original state,
with the turtle in the center of the surface.

This separation of the interactive elements between the program editor and output is
created on purpose, to enforce the sense that they are two independent activities: editing
the program will not alter the output transformation nor the other way around, making
it safe to engage in either of the activities when someone is already working in the other
one. By using different “interaction layers” to present two activities in the same space,
and not creating separated areas, we do not sacrifice valuable space nor define privileged
positions for each activity.

Creating programs

In order to create a program, which is in fact a sequence of instructions, users need to
establish links between the physical objects and to control their order inside the sequence.
Links are represented as virtual lines between the objects, and are automatically created
by the system depending on its proximity with other objects. Depending on the type of
the object, two different strategies to create links are used in TurTan: dynamic linking
and static linking.

By using static links (Figure 3.12 (i→ii)), the position of an object inside the sequence is
decided only once, when the tangible is first placed on the surface. Any later modification
of its relative distances with other objects (by moving or manipulating a linked object)
will not affect its position within the sequence.

In contrast, with dynamic linking the order inside the program sequence may be modified
whenever the relative distances are changed, so that by moving and manipulating any
instruction object on the table it might actually change its position within the sequence

44

3.5 TurTan, a tangible tabletop programming language for education

Figure 3.12: Static (i→ii) and dynamic (i→iii) linking approaches.

(see Figure 3.12 (i→iii)).

Dynamic linking, which allows to swap positions easily between two elements, is a good
choice for applications where the order is not so relevant. Also, when there is a large
number of objects present on the table, the resulting sequence might be rather complex
and the user may have difficulties for anticipating where the tangible will be linked at
the moment of introducing it. Dynamic linking therefore allows for easier adjustments of
the resulting sequence, while static linking provides a better flexibility for manipulating
the tangibles on the table without the danger of destroying the correct order.

In TurTan, objects in the program sequence are linked using static linking, as the order
of the instructions in a program is extremely sensitive to its meaning. Other less essential
objects (such as modifiers) use dynamic linking to profit from its versatility.

Object parameters

Objects may have parameters that users might want to change. For instance the “move
painting” instruction needs an “amount of movement“ parameter to be defined. Those
parameters are defined by spinning the object on the surface.

Because of the different possible scales of the parameter, we noticed that a linear mapping
from the amount of instantaneous rotation ∆α, and the variation of the object parameter

45

3 Exploring tabletops’ distinctive affordances

Figure 3.13: Non-linear scaling of angle.

∆ε in the form of ∆ε = k∆α implied having to trade between high precision (wasting
time spinning the object to get a higher value) or rudeness (making it difficult to be
accurate).
Instead, a parabolic mapping in the form of ∆ε = sign (∆ε) k∆α2 proved being much
more effective providing both high precision for and roughness. The difference can be
seen in Figure 3.13. As you can see, the border between the deceleration zone and the
acceleration zone is 1

k .

3.5.4 TurTan language, as an example of a Tangible Programming
Language

The TurTan language and goal is based on Logo. It can be defined by the types of
objects that can be used to create a program and the syntax or possible relationships
between them. It consists of three different object types: instructions (equivalent to
Logo instructions), modifiers and cards.

Instructions

As Logo, TurTan is an imperative programming language, and therefore, it places a great
importance on instructions and their order (sequence). Every instruction object repre-

46

3.5 TurTan, a tangible tabletop programming language for education

sents an atomic action that the turtle will perform. This action can have consequences
on the output (can leave a trace) and in the turtle’s state (can transform the turtle).
As instructions output depend on the turtle internal state (position, orientation, size)
and they can change this state, the order of execution of the instructions is extremely
relevant to get the correct output.
Instructions are placed on the surface and become a sequence by linking them together
using static linking, otherwise, the object’s position on the table is not relevant. The
linking process creates a single ordered chain of instructions. The direction is defined
by the order in which the objects were placed on the surface: when the second object
is placed, it becomes the last in a sequence of two, beginning with the object that
was placed first. All other future objects are linked to this ordered sequence (at the
beginning, in the middle, or at the end) without changing the direction.
The provided instructions are:

START

a b c d e f g

a) Move painting The turtle moves forward or backward leaving a line trace.
b) Move without painting The turtle moves forward or backward without leaving a

trace.
c) Rotate The turtle turns right or left.
d) Scale The turtle scales its body size and also paints its following trace distances at

a different scale.
e) Return to start The turtle returns to its original state at the beginning of the se-

quence, in the center.
f) Repeat The turtle repeats all the actions since the beginning of the sequence as many

times as indicated by the parameter.
g) Mirror The turtle mirrors herself so instead of rotating right it rotates left and vice

versa. Mirroring a second time cancels the effect.

See Figure 3.14 for an example using only instructions.

Modifiers

Instead of representing instructions or sequences, modifiers dynamically change the pa-
rameter of instruction objects. This idea is very similar to the Reactable controllers

47

3 Exploring tabletops’ distinctive affordances

(Geiger and Alber, 2010).

Modifiers can embed a periodic function, such as an oscillator, or serve as a means
of control from external programs, using OSC messages. Using modifiers, users can
achieve automatic animation of the drawings. One of the possible applications of this
OSC communication is animating TurTan programs at the rhythm of music and sound,
and using it as a VJing tool by analyzing the sound in real time (see Figure 3.15).

Unlike instructions, modifiers are linked using dynamic linking (see Section 3.5.3), and
they are not on the program sequence of instructions, but instead link directly to the
neighboring objects, affecting the parameter of the closest one. This means that moving
around a modifier may eventually change its target.

By rotating a modifier, users can change the amplitude of the modification, which is
selecting the amount of effect that will perform the modifier (oscillator or external) on
the parameter of the instruction.

See Figure 3.16 for an example of a TurTan program using a modifier to create automatic
animations.

Cards

Laminated paper cards can be used in TurTan for storing and running programs. The
idea is using cards to store the current sequence of instructions and modifiers into an
object, which can be used later to recover the program.

The idea of using objects as information containers in order to transfer and keep data
was already introduced in mediaBlocks (Ullmer et al., 1998). We use cards to not only
keep and transfer information, but to label it, as users can write or draw on one side of
the card with a marker pen, to remember its contents.

To save a program into a card, users must place that card on the surface, away from the
instruction sequence, and rotate it 180 degrees to confirm a possible overwriting. Once
recorded, a preview of the program will be displayed next to the card. Later, when the
surface is empty, a card can be placed anywhere on the table and the program will be
loaded and displayed.

The most interesting way of using cards is not only to store and load programs, but to
use stored programs as functions. In fact, cards are also instructions, and can be part
of another program. For instance, we can create a program that draws a square, save it
into a card, and use that card as a building block of a circle made of squares.

See Figure 3.17 for an example of a program using a card as function. Note that the

48

3.5 TurTan, a tangible tabletop programming language for education

Figure 3.14: Simple TurTan program example: a square.

Figure 3.15: TurTan used as a VJing tool.

Figure 3.16: A TurTan program using a sinusoidal modifier to dynamically change the
parameter of a rotate instruction of a spiral.

49

3 Exploring tabletops’ distinctive affordances

program saved into the card ends with a return to start instruction.

3.5.5 Is TurTan better than Logo in an education context?

To find out if TurTan had any kind of advantage over Logo, due to its Tangible interface
compared to graphical interfaces, we decided to perform an experiment in the context
of an education institution, with children of a suitable age (Markova, 2010).

Experimental setup

The study was conducted at a public primary school in Barcelona, Spain, with 24 stu-
dents from 5th grade (10 year old), because that is the age children should be familiar
with most basic geometry concepts, also as recommended by the Montessori Method.
The class was divided into eight groups, three students each, to promote collaboration.

To compare the two environments, we used a Catalan version of FMSLogo13 running
on a portable computer and TurTan, running on a tabletop interface (Reactable), to
compare their learning progress. Groups 1 to 4 started learning TurTan first (TurTan,
Logo), and groups 5 to 8 started learning Logo first (Logo, TurTan), during one whole
week. Halfway through the study, the groups swapped subjects and were tested in the
other condition.

We taught five identical or similar lesson sessions for both interfaces, that were ap-
proximately 30 minutes long, and included a short revision section. The lesson plans
included learning concepts ranging from drawing a rectangle to drawing flowers. The
commands that were taught both in TurTan and in Logo were Forward, Right, Left,
Back, Clear Screen, Pen Up, Pen Down, Start, Repeat and Procedures. All the sessions
were recorded on video and photographs of the progress of each group were taken.

A short individual final task was required to the students at the end of the study, where
they were asked to perform similar tasks in TurTan and in Logo. In it, their activity was
timed and recorded on video and screen activity (in the case of Logo). The students were
informed at the beginning that they had 2.5 minutes to complete the task, although the
time limit was never strictly enforced, because we wanted to compare the actual time it
took each student to complete the task. The final task included drawing stairs or a square
(as a second option), and the students were encouraged to use the Repeat command of
both user interfaces to save time and to test understanding of the programming concepts.

13http://fmslogo.sourceforge.net/

50

http://fmslogo.sourceforge.net/

3.5 TurTan, a tangible tabletop programming language for education

Results

Data from 13 students (2 males and 11 females), who were present at the final task,
was collected for analyzing learning speed and difficulty. The data was evaluated both
by individual results and as a within-subjects experiment with two conditions - TurTan
studied first (TurTan, Logo) or Logo studied first (Logo, TurTan). This was done to
check if learning one affected learning the other.
The variables used to compare results between the two interfaces and different conditions
were time, steps and errors made during the course of training, as measures used to study
learnability, according to Albert and Tullis (2008). This data was collected and analyzed
from 44 hours of video recorded during the training sessions and the final task.
The time variable is defined by the time from the student commencing the task until
saving her work. That also includes all the attempts that the student made to complete
the task. An error is noted when removing all the pucks from the tabletop in TurTan
or cleaning the screen in Logo to commence the task anew, as well as when having
an unsatisfactory result (e.g. wrong geometrical figure). A step is considered to be
a puck placed on the tabletop in TurTan, or a command written in Logo, excluding
measurements or pressing the Space or Enter keys.
On the final task, 85% of students completed their task with TurTan faster than with
Logo (11 students out of 13). The average task completion time per student for TurTan
and Logo was 90 seconds and 213 seconds, respectively. 77% of students used the Repeat
command with TurTan and 69% used it with Logo. Figure 3.18 shows the different task
completion times per student and per subject on the final task, as well as if the student
used the Repeat command. Using the Repeat command is important because it shows
a more systematic work (by simplifying the command sequence), and the final result is
usually achieved faster - students use less steps both in Logo and in TurTan. It also
shows a more advanced level of programming skills because it shows that the students
understand the commands they are using, since using the Repeat command requires
some thinking ahead.
On average, the final task was completed in less than half the time with TurTan. In
terms of errors, the students made only 2 errors in total during their TurTan task, but
they made 41 errors in total when using Logo (only 2 resulting from typing errors). A
possible explanation of why the students completed their task faster with TurTan could
also be the fact that they did not have to make as many attempts, and go through as
many steps, to arrive at the final satisfactory result.
There is a significant difference between the completion time for the final task with

51

3 Exploring tabletops’ distinctive affordances

Figure 3.17: A TurTan program using a function card. In the left picture, a simple
program that will be saved into a card. In the right picture, a program
using the card as the basis of the drawing.

Figure 3.18: Final task completion results. For each student the completion time for
TurTan and Logo are plotted. Repeat marks the tests where the Repeat
instruction was used.

52

3.5 TurTan, a tangible tabletop programming language for education

TurTan and Logo, as well as the amount of errors made using both interfaces (the
Paired-Samples T Test shows 0.2% significance in time and 0.4% significance in errors -
within the 5% confidence interval). The difference in steps (efficiency) is not significant,
therefore this leads us to conclude that, in this case, it is not a relevant variable to
determine learnability, as described by Albert and Tullis (2008). We can state that
using TurTan results in shorter times and fewer errors than Logo.

Relationship between learning orders

When analyzing learning progress, we compared values from the final task with values
from the the second session, for both TurTan and Logo. In the second session, the
students were learning how to draw squares, stairs and castles, which are comparable to
the final task.

Figures 3.19 and 3.20 show the difference in the relationship between earlier and final
sessions of TurTan and Logo. On average, in TurTan, students slightly improved their
performance (performed the task faster) in the final task in the Logo-TurTan condition.
On the other hand, in Logo, in both conditions, (Turtan, Logo) and (Logo, Turtan), they
performed the final task slower than in the earlier sessions, therefore did not improve their
performance. It is clear that the students performed their TurTan final task faster in the
Logo-TurTan condition because TurTan was the interface they had studied immediately
before the final task. However, no such improvement was observed with Logo in either
condition however, even when they had studied Logo immediately before the final task.
In fact, students took more time to complete their tasks in Logo on the final task (almost
twice as much on average), even when they had studied TurTan first and then Logo, and
their memory of it was more recent.

The two T Test tables (Table 3.1 and 3.2) show a significant difference between time and
steps made with Logo and steps with TurTan in earlier and final sessions. There was
no significant difference between final task completion time between earlier and final
sessions of TurTan, but a small improvement can be observed in the (Logo, Turtan)
condition (Figure 3.20). We can state then that in Logo, the final autonomous task is
more difficult (because of greater time, steps and errors) than the guided session, while
in TurTan, although there tend to be more steps involved, the resulting time is not
affected.

53

3 Exploring tabletops’ distinctive affordances

Figure 3.19: Completion time comparison between earlier and final sessions in the (Tur-
Tan, Logo) condition.

Figure 3.20: Completion time comparison between earlier and final sessions in the (Logo,
TurTan) condition.

54

3.6 SongExplorer, a tabletop for song database exploration

Variable Mean Initial Mean Final Significance
Logo time Xi = 99 Xf = 213 p = 0.006
Logo steps Xi = 5 Xf = 12 p = 0.007
Logo errors Xi = 0 Xf = 3 p = 0.003

Table 3.1: T Test significance values between Logo earlier and final results

Variable Mean Initial Mean Final Significance
TurTan steps Xi = 5 Xf = 9 p = 0.017

Table 3.2: T Test significance values between TurTan earlier and final results

Conclusions

The analysis of the videos and on-screen activity taken during the study shows that
the students performed faster with TurTan than with Logo, made less errors and less
steps to complete the final task. A significant difference between final task completion
time and errors leads us to conclude that TurTan takes less time to learn than Logo.
Furthermore, the final task results show that, on average, students performed their final
task twice as fast with TurTan compared to their results with Logo.
The results also showed that there was a small improvement in completion time with
TurTan when the final task was compared to earlier sessions in the Logo-Turtan condition
(when TurTan was studied immediately before the final task), while no such improvement
was shown in the Logo results. On the contrary, students took almost twice as much
time on the final task with Logo than in earlier sessions.
Additionally, the students always tried to work collaboratively, which supports the state-
ment that TUIs are a collaborative type of technology, as shown in the TICLE (Scarlatos,
2002) and Read-It (Weevers et al., 2004) projects mentioned earlier.

3.6 SongExplorer, a tabletop for song database exploration

As seen earlier, many tabletop applications address the exploration of maps or collections
of items. With SongExplorer, we wanted to combine such promising modes, by searching
within an item database represented as a map (Julià and Jordà, 2009).
SongExplorer is a system for the exploration of large music collections on tabletop in-
terfaces. It addresses the problem of finding new interesting songs on large unfamiliar
music databases, from an interaction design perspective. Using high level descriptors of
musical songs, SongExplorer creates a coherent 2D map based on similarity, in which

55

3 Exploring tabletops’ distinctive affordances

neighboring songs tend to be more similar. This map can be browsed using a tangi-
ble tabletop interface. As noted before, it was proposed (Jordà, 2008) that tangible
tabletops can be especially adequate for complex and non-task oriented types of inter-
action, which could include real-time performance, as well as explorative search. This
topic (N-Dimensional navigation in 2-D within tabletop interfaces) was never addressed
before.

With the popularization of the Internet and broadband connections, the amount of music
which we are exposed to has been increasing permanently. Many websites do offer very
large collections of music to the user, either free of charge (e.g. Magnatune14, Jamendo15)
or on a fee-paying basis (e.g. iTunes16, The Orchard17). Such a number of available and
still undiscovered music records and songs seems too difficult to manage in a sorting and
searching-by-keyword way. This is known as the Long Tail Problem (Celma, 2010). In
order to solve this problem and help users to discover new music, many online music
recommendation services exist (e.g. Pandora18, Last.fm19). One of the main drawbacks
of most current music recommenders, independently of the recommendation mechanisms
and algorithms they employ (user profiling, experts-based knowledge, statistical models,
etc.), is that they apply information filtering techniques to the entire collections, in order
to extract and display only a subset of songs that the system believes the user could
enjoy. By doing it this way, the user loses the opportunity to discover many new songs
which are left out by the system, whatever the cause may be.

To solve this problem, we proposed to construct maps of the entire collection of songs and
allowing users to explore them in novel ways. Maps are widely used to explore spaces and
also concepts. Although most commonly used to depict geography, maps may represent
any space, real or imagined, without regard to context or scale. We use conceptual maps
to discuss ideas, we organize data in 2D spaces in order to understand it, and we can
get our bearings using topographical maps. SongExplorer’s maps are constructed using
Music Information Retrieval (MIR) techniques that provide the high-level descriptors
needed to successfully organize the data; they do not filter or hide any content, thus
showing the complete collection while highlighting some of the songs’ characteristics.

Therefore, SongExplorer provides intuitive and fast ways for promoting the direct explo-
ration of these maps. Several successful projects have shown that tangible, tabletop and

14http://www.margatune.com
15http://www.jamendo.com
16http://www.apple.com/itunes/
17http://www.theorchard.com
18http://www.pandora.com
19http://www.last.fm

56

3.6 SongExplorer, a tabletop for song database exploration

multi-touch interfaces exhibit useful properties for advanced control in general (such as
continuous, real-time interaction with multidimensional data, and support for complex,
skilled, expressive and explorative interaction) (Jordà, 2008) and for the exploration of
two-dimensional spaces in particular (Han, 2006). Following this trend, SongExplorer
allows users to interact with the maps directly with their hands, touching the surface
with their fingers and manipulating physical tokens on top of it.

3.6.1 Visualization of music collections

In the field of visualization, there is extensive bibliography on the representation of
auditory data. In the particular case we are focusing on, that of the visual organization
of musical data, solutions often consist in extracting feature descriptors from sound files,
and creating a multidimensional feature space that will be projected into a 2D surface,
using dimensionality reduction techniques.

A very well known example of this method is the work Islands of Music by Pampalk
(2003), which uses a landscape metaphor to present a large collection of musical files.
In this work, Pampalk uses a Self Organizing Map (SOM) (Kohonen, 2001) to create
a relief map in which the accumulation of songs are presented as the elevation of the
terrain over the sea. The islands created as a result of this process roughly correspond to
musical genres (see Figure 3.21). A later attempt to combine different visualizations on
a single map was also created by Pampalk et al. (2004). By using different parameters
to organize the SOM, several views of the collection were created. The results were later
interpolated to construct a smooth parameter space affecting the visualization.

Beyond the 2D views, nepTune, an interactively explorable 3D version of Islands of
Music supporting spatialized sound playback (Knees et al., 2007). Leitich and Topf
(2007) describes a Globe of Music, which distributes the songs on a spherical surface,
thus avoiding any edge or discontinuity.

A different and original visualization approach is chosen in Musicream (Goto and Goto,
2005), an interesting example of exploratory search in music databases, using the search
by example paradigm. In Musicream, songs are represented using colored circles, which
fall down from the top of the screen. When selected, these songs show their title on their
center, and they can be later used to capture similar ones (see Figure 3.22).

In the tabletop applications category, Musictable (Stavness et al., 2005) takes a visu-
alization approach similar to the one chosen in Palmpalk’s Islands of Music, to create
a two dimensional map that, when projected on a table, is used to make collaborative
decisions to generate playlists. Another adaptation into the tabletop domain is the work

57

3 Exploring tabletops’ distinctive affordances

Figure 3.21: Islands of Music (Pampalk, 2003)

Figure 3.22: Musicream (Goto and Goto, 2005)

58

3.6 SongExplorer, a tabletop for song database exploration

of Hitchner et al. (2007), which uses a SOM to build the map and also creates a low
resolution mosaic that is shown to the user. The users can redistribute the songs on this
mosaic, thus changing the whole distribution of SOM according to the user’s desires.

3.6.2 Feature Extraction

SongExplorer uses a total of 6666 songs included in the Magnatune online database,
weighting more than 26 GB. Being Creative Commons-licensed20, this library is used in
many research projects. These songs are processed by Essentia21, a music annotation
library developed at the Music Technology Group (MTG)(Laurier et al., 2009), and the
results are transformed to binary files that can be loaded by the system using the Boost22

C++ library.

3.6.3 Visualization

From the whole set of available annotated features generated by the annotation library,
we are currently using a set of high-level properties and the BPM:

• Beats Per Minute (BPM)

• Happy probability

• Sad probability

• Party probability

• Acoustic probability

• Aggressive probability

• Relaxed probability

All these high level features are independent and, even the moods, which try to cover
all the basic emotions, do not depend on each other (i.e. a song could be both sad and
happy) (Laurier et al., 2009).

With this data, a multidimensional feature space (of 7 dimensions) is constructed, in
which each song is a single data point with its position defined by these 7 features, all of
them being normalized between 0 and 1. From this multidimensional data we construct
a 2D space which preserves its topology, and we present it to the user, who will then be
able to explore it.
20https://creativecommons.org/
21http://essentia.upf.edu/
22http://www.boost.org

59

https://creativecommons.org/
http://essentia.upf.edu/

3 Exploring tabletops’ distinctive affordances

Figure 3.23: Detail of the hexagonal structure of the grid.

Similarly to other visualization works, a SOM is used to distribute the data on the
2D space. Our implementation of the Kohonen network uses a circular, hexagonally-
connected node grid, in order to fit the shape of the interactive surface. As opposed to
the original implementation of SOM (Kohonen, 2001), a restriction is added to prevent
more than one song falling into a single node, so that every representation in the 2D
space should be visible and equally distant from its direct neighbors, as shown in Fig.
3.23.

The SOM defines a mapping from the multi-dimensional input data space onto a two-
dimensional array of nodes. With every node, a parametric model vector, of the same
dimensionality as the former space, is associated, so every node has coordinates both in
the former space and the target space. All model vectors are initialized with low random

60

3.6 SongExplorer, a tabletop for song database exploration

values.

It then starts an iterative process that gradually distributes the data points in the
original space (analyzed songs) into the nodes in the target space (the position in the
hexagonal grid). For every data point di in the original space, taken randomly, it finds the
not assigned node Nj which j = argmink(dist(Nk, di)) where dist(a, b) is the distance
function, in this case the euclidean distance function is used. When the node is found,
it assigns the model vector the value of the data point. Because we want one data
point only assigned to every node, we mark the node as already assigned until the next
iteration.

Once this first step is done, we have all the data points assigned to nodes. It is time
to filter the node array so the values of the model vectors are weighted with their
neighbors, producing a “blurring” effect. This SOM uses an hexagonal topology (optimal
for visualization) and thus in the filtering step calculates the influence of the other nodes
using the hexagonal distance (see Figure 3.24).

Figure 3.24: Hexagonal topological neighborhood. Note that nodes in the same delimited
ares have the same hexagonal distance to the node in the center.

This “blurring” process smooths the model vector map, approaching the nodes values
together. This allows to obtain a node array without high differences between neighbors,
as the goal of SOM is putting similar things together.

This process is repeated until the desired order is achieved. The optimality of the
ordering can be evaluated using the accumulated distance between all the neighbors in
the hexagonal grid (the smoother the map, the better)

In the visualization plane, every song is represented by a colored circle, throbbing at the
song’s BPM. Since there seems to be a strong agreement about the usefulness of artwork
to recognize albums or songs (Leitich and Topf, 2007; Pabst and Walk, 2007), depending

61

3 Exploring tabletops’ distinctive affordances

on the zoom factor, the actual artwork may be shown in the center of each song.

Additionally, colors are used to highlight the different properties of the songs. The
coupling {feature → color} was defined with an online survey where 25 people had to
pair the high-level tags to colors. The color candidates were 7 distinctive colors with
maximum saturation and lightness: red, blue, green, brown, cyan, yellow and magenta.
An online questionnaire was created where subjects were only able to choose the best
color representation for each tag. The results were: aggressive-red (with an agreement of
100%), relaxed-cyan (43.5%), acoustic-brown (52%), happy-yellow (39%), party-magenta
(48%) and sad-blue (56.5%).

For every song, its corresponding property value is mapped into the saturation of the
related color (0 meaning no saturation thus resulting on a grey color, 1 corresponding
to full saturation), while the lightness is kept to the maximum and the hue is obviously
linked to the emotional feature selected, as described in the previous color pairings
(Fig. 3.25 shows the effect of different highlights on the songs). An option to see colors
representing genres is also provided, although in that case the pairing between genres
and colors is done randomly.

Multi-touch interaction

Basic finger interaction includes single and multiple finger gestures, and the use of one
or two hands. The simplest gesture, selecting and tapping, is implemented by touching
a virtual object shown on the table surface, with a single finger and for more than 0.4
seconds. In order to distinguish them from this selection action, other finger gestures
involve the use of two simultaneous fingers for each hand. That way, using only one
hand, users can translate the map and navigate through it, while the use of both hands
allows rotating and zooming the map (see Fig. 3.26).

When the user puts two fingers close together a visual confirmation is shown over the
map (see Figure 3.27). The navigation is designed in order to maintain the relationship
between the physical position of the hands and the virtual points of the map. When using
one hand, moving it will cause the map to move, in order to maintain the same position
under the fingers. This gesture is extremely intuitive, since it is the same movement
used to move a real map. Zooming and rotating the map is based on the same principle.
The map scales and rotates himself to match the position of the fingers. It should be
noted that most of these gestures have become de facto standards in multi-touch and
tabletop interaction (Kim et al., 2007).

62

3.6 SongExplorer, a tabletop for song database exploration

Figure 3.25: Colors highlighting high-level properties: sad, party, happy, relaxed, aggres-
sive and acoustic.

Figure 3.26: Virtual Map movement (up) and zooming (down)

63

3 Exploring tabletops’ distinctive affordances

Symbol Name Description

playlist navigator Permits to run over the songs on the playlist

color changer Allows to highlight features of the songs

magnifying glass Shows information about songs

navigation menu Provides a way to return to known situations

Table 3.3: Tangibles used in SongExplorer

Tangible interaction with pucks

Additionally, SongExplorer tangibles also include 4 transparent Plexiglas objects, each
one with a different shape and a different icon that suggests its functionality, as described
in Table 3.3. These pucks, become active and illuminated when they get in contact with
the interactive surface. As indicated below, some (like the color changer or the navigator)
will apply to the whole map, while others (such as the magnifying glass) apply to the
selected song.

• The color changer puck allows selecting and highlighting one of the different emo-
tional properties of the whole song space. For example, changing the map to red
allows us to see the whole map according to its aggressive property, with fully red
dots or circles corresponding to the more aggressive songs, and grey dots to the
least aggressive ones. Apart from helping to find songs based on a given property,
the resulting visual cues also help to memorize and recognize the already explored
zones of the map.

• When placed on top of a song, the magnifying glass puck allows seeing textual
information on this particular song, such as the song title, the album, the author’s
name, as well as its artwork.

• The navigation puck displays a navigation menu, which allows the user to perform
actions related to the movement and zooming of the map, such as returning to the
initial view, or zooming on the currently playing song.

• The playlist navigator puck allows the creation and management of the playlist,
as described below.

64

3.6 SongExplorer, a tabletop for song database exploration

Managing playlist and playing back songs

SongExplorer has the ability of creating and managing song playlists. Playlist are graph-
ically represented on the surface as a constellation, in which the stars (i.e. the corre-
sponding songs it contains) are connected by lines establishing their playing order (see
Fig. 3.28). Most stars have white stroke, except for the one that is currently playing
(red), and the one the playlist navigator is focusing on (green).

Playlists allow several actions using both the fingers and the playlist navigator puck.
When tapping on a song, this is automatically added to the playlist. Users can start
playing a song by tapping on any star of the playlist. Similarly, crossing out a star
removes the corresponding song from the list. A song will stop playing either when
it reaches its end, when the song is deleted from the playlist or when another song is
selected for playing, and a playlist will keep playing until its end, unless it is stopped with
the playlist navigator puck. This object allows several additional actions to be taken
on the playlist, such as navigating through its songs and showing information about the
focused song in the same way the magnifying glass does.

3.6.4 Interface Evaluation

Some user tests were undertaken in order to evaluate the system, focusing on the interface
design. The evaluation consisted in three areas: subjective experience, adequacy of the
visualization and the organization, and interaction.

Experiment Procedure

To carry out the tests, an interactive tabletop with SongExplorer up and running was
provided. The system was always on an initial state at the beginning. One subject at a
time was doing the test. First of all, a little explanation about the purpose, visualization
and interaction was given. Then the subject was asked to find something interesting in
the music collection. No time limit was imposed, and the subject was observed through-
out the process. At the end of the activity, the subject was told to fill a questionnaire,
on which she had to rate, using a Likert scale of 11 levels (10: Totally agree, 0: Totally
disagree), the several aspects of each area. They could also write suggestions at the end
of the test.

65

3 Exploring tabletops’ distinctive affordances

Figure 3.27: Visual feedback for 2-fingers gestures, original and live

Figure 3.28: Playlist and Playlist navigator

66

3.6 SongExplorer, a tabletop for song database exploration

µ1/2 IQR

Enjoyed the experience 8 1
Discovered new music 8 1

Felt comfortable 8 1.5
Found it useful 9 0.5

Found colors correct 8 1.5
Found categories suitable 7 1
Found graphics adequate 9 1.5

Table 3.4: Evaluation Results. µ1/2: Median, IQR: Interquartile range.

Results

After doing the tests, the results were quite positive (see Table 3.4). Regarding the per-
sonal experience with SongExplorer, the subjects enjoyed the experience, discovered new
and interesting music, felt comfortable, and found it useful to find interesting music. So
the overall experience seemed to be good; we have to notice the low deviation, indicating
that there was an agreement about these opinions.

Focusing on the visualization process, there was also a common opinion about the suit-
ability of the colors used. This is not a surprise, as they were extracted from an online
poll (details on subsection 3.6.3). According to the subjects, the categories (formerly
the high-level properties from the annotation software) were suitable for the purpose of
describing music. The graphics were also evaluated (meaning the adequacy of icons, the
metaphor song-circle, the panels...) and also appreciated.

The level of understanding of every gesture and tangible of SongExplorer was tested, as
well as their difficulty of use and usefulness. The only noticeable result was that there
seemed to be an inverse correlation between previous experiences with tabletops and the
perceived difficulty of finger gestures.

Finally there was a general demand for more music-player capabilities like pause or a
progress bar for jumping to the middle of the song. The option of bookmarking and
storing playlist was also desired.

3.6.5 Is map coherence important for music discovery?

While it may seem reasonable that clustering the presented songs together according to
their similarity is an important factor contributing to the good navigation of the map,
the extent to which this affects the user’s experience and the result of the interaction
needs to be quantitatively studied(Lechón, 2010). Are users finding new interesting

67

3 Exploring tabletops’ distinctive affordances

Figure 3.29: Comparison between two maps, one in the normal condition (left) and the
other on the scrambled condition (right), highlighting the Happy probabil-
ity. Notice the different dispersion.

songs because they are able to find similar songs close together and refine its search, or
the simple fact of having random music presented to the users is enough?

Our hypothesis was that the spatial ordering is indeed important and we tested it by
providing two experimental conditions. The first one is the original condition (the normal
condition), the second one differs from the former in that the goodness of the generated
map is substantially degraded through a process of random scrambling (the scrambled
condition).

The process used to worsen the quality of the maps presented on the scrambled condition
is by taking two random non-overlapping quarters of the songs and exchanging their
coordinates on the map. By following this procedure, half of the songs are randomly
displaced throughout the map, contaminating the coherent distribution of the musical
pieces (see Figure 3.29). By comparing the users’ subjective perception of the system and
their relative performance carrying out a task in both conditions, we expect to accept
or reject our hypothesis.

68

3.6 SongExplorer, a tabletop for song database exploration

Experimental setup

Twenty participants (13 female, 7 male, all university students or junior university staff,
mean age 26.9 ± 2.29) volunteered for this study. Half of them (8 female, 2 male, mean
age 26.9 ± 2.02) were exposed to the normal condition while the other half (5 female, 5
male, mean age 26.9 ± 2.64) were exposed to the scrambled condition. After introducing
the system to the participant, she was asked to complete a task consisting in navigating
the map looking for songs she enjoyed and tagging them for 15 minutes. During the
task, several events from the interaction were logged in order to further analyze them.
The participant would fill a questionnaire afterwards.

Several measures can be used to answer the question of whether the SOM ordering plays
a primary role in the interaction in SongExplorer:

• Question 4 from the questionnaire asks the subjects whether they agree with the
statement "The ordering of the songs on the map was confusing".

• The number of songs the users liked during the interaction is a direct performance
measure that can be normalized by dividing it by the total number of songs played.

Analyzing the recorded data we can expose other measures. Due to the fact that a
correct ordering of the map keeps similar music pieces together, in the normal condition
the subjects are expected to find music they like lying closer than users of the scrambled
condition. This difference should lead to a sparser navigation of the map for the users
of the scrambled condition. Two related measures can give us a sense of the sparsity of
the navigation performed by a subject:

• Total traveled distance through the map, reconstructed by taking the length of the
playlist including the originally removed songs.

• Mean distance between consecutive songs added to the playlist.

Results

We compared the means of the four measures across the two conditions using an unpaired
two-tailed T-Test. Regarding the questionnaire, users of the normal condition rated the
perceived ordering higher than those from the scrambled condition (5.1 ± 2.51 vs 3.1 ±
2.23 Likert scale, range 1 to 10); however, the difference among the two conditions was
not significant (p=0.33) (see Figure 3.30).

Both the number of liked songs, and the proportion of liked songs over played songs,
however, seem to yield unexpected results (number of liked songs: 5.7 ± 2.12 normal, 7.1

69

3 Exploring tabletops’ distinctive affordances

Figure 3.30: Answer to item four on the questionnaire: perceived order of the map.

Figure 3.31: Total length of playlists (left) and mean step between songs in the playlist
(right)

± 4.2 scrambled; proportion of liked songs: 0.29 ± 0.11 normal, 0.31 ± 0.15 scrambled).
Again, there was no significant difference across conditions (p = 0.47).
The length of the playlists is found shorter in the normal condition (4.67 ± 1.97 vs 6.11
± 2.62). Although without significant difference (p=0.28) (see Figure 3.31, left). The
mean distance between consecutive songs added to the playlist was still shorter for the
normal condition (0.16 ± 0.08 vs 0.22 ± 0.13), although again there is no significance
(p=0.41) (see Figure 3.31, right).

Conclusions

Considering the results, we cannot confirm our hypothesis that the ordering of the song
map affects the discovery of new interesting music.

70

3.7 Tabletop Applications TSI

There are several possible explanations for these results. First of all, maybe users prefer
diversity when looking for new music, and thus ordering the songs is unnecessary. In
this case, as stated previously, presenting the songs in the form of a map, and allowing
users to quickly jump between different songs, is good enough for the users in order to
find interesting music.

However, the benefits of an ordered song map may appear more in the long term, when
the big song database starts being familiar to the users, who are then able to recall
whether a particular area was interesting in the past and therefor can find new interesting
music faster. Because of the nature of the experiments, this effect would pass undetected.

We cannot rule out the possibility of problems with the experimental setup (we used a
bad ordering method, chose song features irrelevant to the user perception of the song
collection, used a song collection unsuitable for the task or relied on a badly tagged song
collection).

We are still convinced that plotting the songs on a coherent 2D map can help users
navigate big song databases. In particular, the SongExplorer interface seems to be
specially pleasing and approved by its users. Although there are some doubts on the
ordering method regarding its influence of new music discovery,its influence on recall is
still to be assessed, in future sessions of a same user.

We also think that this browsing method could also be applied to other kinds of data.
Pictures, for instance, could be analyzed to extract features (such as color-based, face
identification, etc) from them, in order to be sorted in a map, becoming a non-linear
viewer for family photos.

3.7 Tabletop Applications TSI

Acknowledging the need of dissemination of tabletop applications, which rarely become
public for various reasons (private projects, student work, work in nonacademic envi-
ronments), we think it would be useful to briefly expose some of the projects done in
the context of the author teachings in a course in tabletop application making. This
course was taught for four consecutive years, and it was influenced by its approach into
tabletop application making from a multi-user real-time perspective with an important
implementation part.

The outcome of this course was a finished tabletop application, ready to be used on a
real Reactable device. In this section we describe 11 works that were selected from a
total of 35. They were selected for their final quality, their novel interaction techniques

71

3 Exploring tabletops’ distinctive affordances

or their good concept. The complete details of the teaching, used materials and tools
are explained in detail in Chapter 4.

By revealing these works, the tabletop and TUI community can learn from the com-
mon aspects and practices that arise in the tabletop application making process, which
otherwise remain hidden.

3.7.1 Puckr

Original author Roger Pujol

Soundtrack authors Pablo Molina, Francisco Garcia and Frederic Font (2009)

Air hockey game, with generative music. Every player (up to 4) has to score the disk
into the goal of other players. After receiving 4 goals a player loses and is eliminated
from the game. After a period of time the level passes.

As the game progresses, new actions are available to players (as using fingers to create
a temporary wall of ice, or the ability to use objects that power up the disc or create a
trajectory-changing roulette).

The sound track of the game is generative, and depends on the current level and events
of the game. The pucks used to “hit” the disc have a comfortable shape to apply the
needed speed and force (see Figure 3.32).

3.7.2 TUIGoal

Authors Arturo Lascorz, Javier Salinas, Juan Luis Lopez and Juan Manuel Lentijo
(2009)

This game is a replica of a traditional children game where bottle tops are used as players
to fake a soccer game. The field is presented on the surface with a goal and three bottle
tops per team. By dragging their finger on a bottle top, the players can define the
direction and power of a kick that will project the bottle top to hopefully hit on the ball
and make it to through the other team’s goal.

This adaptation improves the original game by removing turn-based game mechanics.
Instead players can manipulate the bottle tops at any time. This also allows multiple
players to join the game at the same time.

Objects are used to customize parameters of the field: scenario, bottle top’s weight,
friction of the ground, etc.

72

3.7 Tabletop Applications TSI

3.7.3 Punk-o-Table

Authors Dani Garcia, Iván Hernández and Miguel Ferreiro (2009)

A musical sequencer centered on the punk musical genre. Three objects represent three
instruments that can be manipulated: changing their volume by rotating them or defin-
ing its sequence of sound loops in different time scales by dragging a finger on a cell of
the row presented around the object. Shaking the object erases all registered loops from
the sequence.

Other objects are provided to change the playing speed or the number of the beat
subdivisions, to save and load the whole song or instruments sequence, or to pause the
whole application.

3.7.4 Smash Table

Author Alejandro Sánchez (2010)

A replica of a competitive card game where players win by getting rid of all their cards.
The cards are managed by the system (sorting, distributing) as well as the games logic;
leaving the four players with the active part.

Players will uncover a card from their personal pile, in order. Every time a card is uncov-
ered, the rules of the game may require battle between two or many players, depending
on the combination of the four visible cards:

• When two or more cards have the same figure on them, a battle is called between
their owners.

• If a color star card is present on the table, the above rule applies but instead of
comparing their figures, their color is compared.

• If a four-way battle card is on the table, all the players engage into the battle.

A battle consist of attempting to place their token at the center of the table first. The
last player to place his token loses, and collects all the played cards into his pile. If a
player places her token mistakenly (when there is no call for battle), she also loses, with
the same consequences.

It is interesting that because of the violent nature of this game, using rigid tokens could
be dangerous. The game creator came out with an idea that was proved so effective,
that it has been copied in many later projects: using soft objects easy to handle. In
his case he realized that dish sponges had a convenient handle and their size allowed

73

3 Exploring tabletops’ distinctive affordances

to place a fiducial marker underneath (see Figure 3.34, right). This solution perfectly
allows to safely play the game.

3.7.5 80-table

Authors David Peñuela, Marc Ramírez, Miquel Cornudella and Piero Sacco (2010)

A tribute to PacMan. Every player (up to four) has a character that moves freely in
a circular endless space filled with dots. Eating those dots (by passing through them)
gives the player points. The player that has more points after a time period wins.

The characters are commanded with rotatory tangibles that control the direction of their
movement, while the speed cannot be controlled. When two characters collide, they lose
part of their points in a form of dots around the collision place.

Around the driving tangible, points are displayed, and also attacks and bonuses are
offered. To use them, players hit a character (its own if it is a bonus, another players’ if
it is otherwise) with a fly swatter (see Figure 3.35, right). This tool is extremely useful
for fast movements with precision, and has been replicated in later projects.

3.7.6 Tower Defense

Authors Roger Tarrago and Sergi Juanola (2011)

A classic tower defense game. Two players take different roles in the game. While the
first one creates caves, where attackers come out from, using a hammer, the second one
places defensive towers around the center (see Figure 3.36, center and left).

Attackers are automatically created periodically in the caves, while the towers automat-
ically shoot them if they pass through the targeting space. Both the type of attackers
and the weapon of the towers is chosen from a surrounding menu. The available set
of attackers depends on the level (that changes with time), while the available set of
weapons depends on the amount of interconnected towers (the amount of available tow-
ers increases with the level).

It is interesting how the authors used the appearance of the object to convey meaning,
instead of just using generic shapes, which is the most common strategy in past projects.

3.7.7 Pulse Cubes

Authors Antonio Ruiz, Iván Mahindo and Adrià Ruiz (2011)

74

3.7 Tabletop Applications TSI

Figure 3.32: Puckr

(a) TuiGoal (b) Punk-o-Table

Figure 3.33

Figure 3.34: Smash Table

Figure 3.35: 80-table

75

3 Exploring tabletops’ distinctive affordances

Pulse Cubes creates rhythms from networks of interconnecting objects. Those objects
are cubes where each side represents a different sound sample. When placed on the table,
each cube can be aimed to another one to establish a connection. Those connections
transport pulses that travel at a fixed speed from one object to another, meaning that
between more distant objects the pulse will take more time.

When users touch the circle created around the object or when it receives a pulse from
a connection, its sample is played and immediately a pulse is send through all its con-
nections.

Connections can be configured to be one way or two way. The network created by
the objects and connections will create a space of rhythm possibilities, which can be
self-sustaining, extinguish themselves, or explode exponentially.

The network can be changed in real time provoking the resulting rhythms to change
dynamically.

3.7.8 Rubik Musical

Authors Andres Bucci and Álvaro Sarasúa (2011)

A circular step sequencer. Instead of using a horizontal score, the authors decided to
present time traveling from the center of the table to the outer edge, thus putting the
sequence of notes in radial position. Three different instruments, each with a distinct
color, can be controlled with five notes, each in a pentatonic scale. By placing the finger
onto the circle of a particular note and time position, users switch the activation of such
note.

The evocation of the Rubik Cube relates to two functions that can be controlled with
objects. One moves the score forward and backward in time, either for one instrument
or for the whole sequencer. While the sound effect is delaying or advancing the sequence,
the visual effect is moving the notes away or closer to the center.

The other one also moves notes, but instead of moving them to or from the center, it
moves them around the center. With a clear visual effect, the sound effect is interestingly
unpredictable: while for most notes of every instrument there will simply be a pitch shift,
some notes will overflow from one instrument to another. Taking into account that one
of the instruments is percussion, the results are quite interesting.

Another object is provided in the form of a sponge (see Figure 3.38, right). Instead of
for safety reasons, the decision here is purely aesthetic and metaphorical, as it is used
to clean the score.

76

3.7 Tabletop Applications TSI

Figure 3.36: Tower Defense

Figure 3.37: Pulse Cubes

Figure 3.38: Rubik Musical

77

3 Exploring tabletops’ distinctive affordances

(a) Naus (b) Ranas

Figure 3.39

Figure 3.40: Scrabble

3.7.9 Naus

Authors Juan Cava, Oscar Cosialls and Eduard Soler (2012)

A three player spaceship battle game. One of the players controls a big ship with two
cannons at one side of the table. Using an object she can control the direction of the
cannons. Also, by doing gestures with the fingers, the player can try to create new
smaller secondary ships.

The other two players control two tiny ships with an object as a handle, so they can
move and aim them easily. When a new ship is summoned by the other player, they
have a small period of time to cancel such creation, by performing a complex gesture in
place. The gesture is described by a series of numbered dots that the players have to
connect with a single finger stroke. Other power ups are available by the two players to
gain special temporary powers.

The decision of using the gesture complexity as a challenge in the game is interesting,
usually gestures are selected by their ease of use and not the other way around.

78

3.7 Tabletop Applications TSI

3.7.10 Scrabble

Authors Joan Anselm Cardona, Adrián Ponz and Xavier Zanatta (2012)

A word game. Up to four players situated around the table try to form words by picking
letters from a common pool. To pick a letter, players take their picking object and hit
the letter, this is then added to their forming word and removed from the pool. After a
limited time, players that formed a correct word are awarded with points computed in
the way of the original Scrabble23 game.

As the process of picking letters is competitive and can result in violent hits, the team
learned from previous projects and used soft objects (see Figure 3.40, right).

3.7.11 Ranas

Authors Fidel Montesino and Iris Serrano (2012)

A tribute to Hungry Hungry Hippos. With its same mechanics four players control four
frogs to eat flies in the center of the table. Each frog can also shoot a missile to kill
other frogs. Wasps also appear and users must avoid eating them.

What is interesting in this game is the way players control the frogs. Wands were created
with fiducial markers on the palm, the thumb and the index and middle fingers together.
Users placed the pal on the surface to move the frog, touched with the index and middle
fingers to unroll the tongue to chase flies, and touched with the thumb to shoot a missile
(see Figure 3.39b).

3.7.12 TSI applications’ statistics

Taking into account all the projects created in the TSI course, we can extract and com-
ment some interesting statistics regarding various aspects of the interaction (a complete
List of the projects and their characteristics can be found in Appendix C). For instance,
we saw a predominant preference for creating games, specifically 71.43% of the applica-
tions. This preference can be explained by the real-time multi-user nature of this kind
of applications. Accordingly, we would expect a high percentage of music related appli-
cations, because of their similar real-time requirements, but that sector constituted only
20.00% of the total. This can probably be explained by the low level of music training
of the students, as opposed to video-game related experience.
23http://www.scrabble.com/

79

http://www.scrabble.com/

3 Exploring tabletops’ distinctive affordances

Applications designed to solve specific problems or tasks accounted for 14.29% of the
projects, while 5.71% were concept demonstrations regarding specific interaction tech-
niques (percentages of application types overlap because of entries entering into multiple
categories).

Object-based interaction (94.29%) was preferred over finger-based (71.43%). Several
factors can explain this preference; firstly, we insisted on the students using objects
where possible and coherent. Secondly, in most of the cases, finger tracking is less
reliable than object tracking in the Reactable. A third possibility is that, because of
interaction design requirements, objects could be more suitable than fingers. An example
of this is the use of objects to identify the user interacting with the surface, 39.39% of the
applications using objects actually used them to identify the user, accounting for 52,00%
of the games (it seems that identifying players in games was an important issue).

We have also seen how soft objects were first introduced in Smash Table and later copied
in other projects. This is probably the most evident example, but other object strategies
have also been influencing later projects, such as the use of fly swatters.

3.8 Conclusions

We reviewed the distinctive affordances of tabletops, which come from the capability
of interacting with objects, from the shape of the interface (big, table-shaped) or from
the possibility of having multiple interaction points. We showed that, despite those
capabilities, there is still a limited number of successful commercial tabletop applications.

Two examples of tabletop applications using its capacities were presented, describing
their purpose, their functioning and their evaluation. Those can serve as a guide of how
to take advantage from the tabletop capacities to design a coherent interaction.

Addressing the apparent lack of interest on tabletop application making, we also tried
to promote its practice by teaching a dedicated course to undergraduate students. We
gave a theoretical background, as well as practical tools, best practices and examples
helping them to achieve the best results. The results were presented to contribute to the
knowledge of the current practice and general trends in tabletop building communities,
a topic that is rarely documented.

While supporting those projects (and because of our own experience in the field) we
assessed the added difficulty of programming such systems, which we addressed by cre-
ating specific frameworks to support their typical challenges. This effort is described
in next chapter, Empowering application developers along with the consequences on the

80

3.8 Conclusions

resulting projects for each introduced feature and enhancement.

81

3 Exploring tabletops’ distinctive affordances

82

4 Empowering application developers

If I have seen further it is by standing on the shoulders of giants.

- Isaac Newton

Documenting the distinctive affordances and features of tabletops, as well as providing
relevant examples of good interaction design for this type of devices, may not be suf-
ficient to successfully support the creation of applications for them. Frameworks that
help developers to create applications that take tabletops’ advantages into account and
encourage the use of related good practices is equally necessary.

In particular, frameworks allow programmers to focus on the details of the application
and not on the common set of repetitive tasks needed to build a tabletop application.
General solutions to common problems are supplied so that programmers do not have
the temptation to implement them themselves again, which would not only be time
consuming but also introduce potential associated problems such as new bugs.

Simultaneously, by defining the programming idiom and common strategies in the frame-
work, developers are forced to code in a specific fashion that avoids common bad designs
or pitfalls to appear.

In this section we describe two frameworks that try to address the aforementioned chal-
lenges, ofxTableGestures and MTCF, both created and evolved in the context of teaching
how to create tabletop applications for the Reactable hardware (see Section 3.4).

The two frameworks have two different purposes. While ofxTableGetures is intended to
be used by programmers and students of computer science, MTCF is designed for sound
and music computing students and artists. Despite of this, we, their authors, also use
them a great deal.

As opposed to creating applications, where users have to be taken into account, a frame-
work developer has to think about future developers as well. When developing a frame-
work for internal use, many practices, idioms and programming conventions are intro-
duced without noticing. Features that may seem important, because of past experiences,
are added while others are left out because they were considered too trivial. Contact

83

4 Empowering application developers

with other developers and practitioners is essential to try not to be affected by such
deviation.

In this sense, it is important to consider that those frameworks were developed for
students assisting courses where they were encouraged to use them. Having a set of
new developers using the frameworks, presented itself as a great opportunity to test and
improve them, according to the results and problems found by the students.

So, although we used the frameworks internally most of the time, new fresh students’
troubles served as a driving force for their improvement, trying to address the type of
challenges that a new developer would face when creating such type of application.

4.1 ofxTableGestures: a framework for programmers

The reasons that led us to create a framework for programing tangible tabletop applica-
tions are two. First, through the experience of implementing various of such applications,
we started to notice that some parts were just being copied throughout different projects,
and we considered that we should unify these pieces of code into a single package. Sec-
ond, for the upcoming teaching duty on Taller de Sistemes Interactius (TSI, interactive
systems workshop), we needed to provide a base to the students where they could develop
their projects.

The course started, in fact, almost a decade ago, initially conceived as an “advanced
interface design course”, and progressively evolved into a more specific “tabletop design
course” the last years. It was given in one trimester (10 weeks), with four teaching hours
every week, which are divided into theoretical and practical classes (2 h/week for each).
The about 30 students that integrated the course generally were skilled at programming
(e.g. they had good knowledge of C++), and had studied a more traditional course on
HCI the previous year, but had no prior knowledge of tangible or tabletop interaction,
and had never studied any design-oriented discipline.

The course objectives were the following: (a) to deduce and learn from observation
and analysis what may constitute some valuable design criteria for tabletop interaction,
understanding the main benefits and drawbacks of these technologies, in order (b) to
conceive, design, implement and informally test a real tabletop application. Given the
short time available and the ambitious scope of the course, the traditional iterative
process of designing, implementing, evaluating, redesigning, re-implementing, etc., could
not be applied. To solve this limitation, much emphasis was given in the initial design
process, which was attained by studying, analyzing and criticizing many (both successful

84

4.1 ofxTableGestures: a framework for programmers

and unsuccessful) examples, fostering the discussion and the active participation among
all the participants.
The practical part was done in groups of three. This aimed at teaching all the implemen-
tation steps to create an application that could eventually be used on the real device,
covering the whole tangible tabletop application implementation process. In previous
years it even combined hardware construction, with students being asked to build their
own simple tabletops using a cardboard box, a source of visible light and a cheap web-
cam. Although instructive, the outcomes of these works were hardly ever used (mainly
because of the lack of a space to store them in), consuming also too much of the students’
time and energy. Lately, we therefore decided to concentrate on the software part, given
that the students’ final results will be finally tested on a real and fully working tabletop
interface anyway.
The framework resulting from this support evolved over time, deciding to enhance and
correct bugs every year in function of the feedback and application results of the students.
We present 4 versions of the framework corresponding to the courses for the years 2009
through 2012. In each iteration we will describe the implementation and changes with
respect to the previous version and the observed consequences on the resulting projects.

4.1.1 The early stages: providing libraries (2009)

Creating a new tabletop application from scratch, can be a cumbersome activity involv-
ing many complex tasks. Several well-known open-source solutions do exist addressing
the highly specialized input component, both for the tracking of multi-touch fingers, such
as the NUIGroup’s Community Core Vision1, or for the combined tracking of fingers and
objects tagged with fiducial markers, such as reacTIVision (Bencina et al., 2005). These
software tools greatly simplify the programming of the input component, essential for
this type of interfaces, but this is only one part of the problem. The visual feedback
or the graphical user interfaces, which often also include problems specific to tabletop
computing, such as aligning the projector output with the camera input or correcting the
distortion that results from the use of mirrors, still have to be manually programmed.
In earlier years, only one piece of software technology was provided to the students:
reacTIVision. The choice of programming language, libraries, etc to use for implementing
the application was left to the students, as long as it accepted the TUIO protocol.
This choice often resulted into applications that were not usable in the Reactable hard-
ware. A typical problem was the graphical distortion; because of the position of the

1http://ccv.nuigroup.com/

85

http://ccv.nuigroup.com/

4 Empowering application developers

projector, the mirror and the surface, the image is projected with a considerable key-
stone deformation. As many technologies used by the students were limited to 2D output
(such as Java 2D API2), they were unable to apply a correcting distortion to the resulting
image. The result often was that, after a hard work of several weeks, their applications
worked correctly only with the simulation software provided with reacTIVision, but when
used on the Reactable, the images did not meet the objects and fingers on the surface.
Needless to say, this was not very encouraging for the students.

Another undesirable consequence of this freedom of choice for the students was the com-
patibility problems between different operating systems and building platforms. Because
of that, very few of the projects from this period have survived the passage of time, as
the necessary versions of frameworks, libraries and environments often get increasingly
difficult to obtain and install with time.

To avoid these problems, we decided to provide a framework that would be used by the
students to create their applications, which complied:

• Multi-platform: students have to be able to work at home with the platform of
their choice, so we needed a framework that could at least run on Windows, Mac
OSX and Linux. This would contribute in solving the perishability problem.

• Input independent: making it TUIO compatible, any TUIO-based tracking pro-
gram could be used, ensuring the independence from a particular library or pro-
gram.

• Graphics distortion correction and input alignment: The Reactable (and many
other tabletops) projects through a mirror in order to maximize the projection
distance. This inevitably causes some graphic distortion and complicates the per-
fect alignment of the input with the graphical output. The new framework should
transparently solve these programming problems, or at least facilitate this solution.

• Without an existing set of widgets or gestures: we feared that if the framework
provided simple ways to create WIMP-like elements, the students would use them
to save time; even if that was not in accordance with the goals of the tabletop
interface, mainly supporting multi-user activity. We wanted to encourage the
students to implement the gestures and visual components from scratch, so they
could think about its appropriate use.

• Simulation software: since we did not have enough interactive tables for all the
students, we needed a simulator solution that would allow the students to easily
develop and test their applications, even at home.

2http://docs.oracle.com/javase/tutorial/2d/overview/

86

http://docs.oracle.com/javase/tutorial/2d/overview/

4.1 ofxTableGestures: a framework for programmers

Figure 4.1: TUIO Simulator and graphical distortion.

Some of these requirements prevented us to use existing solutions from that time. So
we decided to put together a C++ framework with the minimal needed functionality:
Integrating a TUIO client so students would receive object and finger events directly
in the application code and using OpenGL libraires to draw graphics, with the code to
distort the image and calibrate this distortion already implemented and transparent to
the students (see Figure 4.1). Those choices were multi-platform and we provided means
for compiling the framework in all platforms.

The simulator software solution was provided by using TUIO Simulator, a program from
the reacTIVision suite that allows to simulate finger and object interaction on the table
with the mouse and sending the TUIO messages directly to the developed application
(see Figure 4.1).

The results at the end of the course were very positive. Almost all of the groups could
correctly use their application in the tabletop hardware, thanks to the graphical dis-
tortion already implemented in the framework. Only one group had problems with the
calibration and it was because they did not use the framework at all, but wanted to use
Java.

We detected some difficulties and caveats the students had in the process of creating the
applications. Those should be corrected and used to evolve the framework.

One of the problems students faced was the lack of provided libraries for common tasks
such as image and texture loading, sound output, access to time and date, etc. Much
time was used to solve these technical difficulties that did not specifically form part of
the main task of the course: designing and making a tabletop application.

87

4 Empowering application developers

Students also encountered problems when implementing gesture recognizers for their ap-
plications. As the framework did not enforce a distinction of gesture and program code,
the two would typically get mixed (i.e. in the same class) and evolved into an unstable
situation, where implementation of complex recognizers was difficult, and allowing multi-
user input very hard to achieve. A clear example was happening in Punk-o-Table (see
Section 3.7.3); the students implemented a shake gesture recognizer for a single object,
integrated with the main program and loop, and debugging the recognizer was encoun-
tered to be very difficult because of the integration with other code, eventually realizing
that in order to allow this gesture to be performed with various objects simultaneously,
they would need to rewrite everything.

A third problem that added difficulty to the students was using the TUIO Simulator
to test their applications. Because the simulator is a separated program, input events
such as finger and object input happened in a different window than the visual output.
Touching a particular element on the program from the simulator was not easy. Some
workarounds were used to attempt to unify those input and output elements: as some
Linux window managers allowed to present a particular window as translucent, the
simulator could be placed above the application in order to simulate this integration,
but this situation was not optimal.

Those problems would be addressed in the next version of the framework.

4.1.2 Creating Gestures is the key (2010)

To solve the issues identified during the first year we transformed the framework in
several ways. First of all, we adapted the framework to work with openFrameworks3

(OF), a group of multi-platform libraries written in C++ designed to assist the creative
process, which integrates libraries for easily loading textures, videos, sounds and music
(Noble, 2009). OF also brings advanced OpenGL methods for drawing figures and an
abstraction layer between the drawing and the input loops.

The renewed framework4 (now called ofxTuioGestures and ofxTableDistortion5) is an
add-on to OF, and is now divided in two parts: TUIO input and graphics output. This
division forces the separation of gesture detection from the application’s logic, solving
the problem of mixing the two, present in the previous version.

The TUIO input part processes the messages that arrive to the framework from any
3http://openframeworks.cc/
4https://github.com/chaosct/ofxTableGestures/tree/legacy
5It is common practice to prepend names of OF add-ons with ofx.

88

http://openframeworks.cc/
https://github.com/chaosct/ofxTableGestures/tree/legacy

4.1 ofxTableGestures: a framework for programmers

class testApp : public CanDirectObjects < CanDirectFingers
< tuioApp <TableApp > > >

{
public :

void Setup ();
void Update ();
void Draw ();
void WindowResized (int w, int h);
// CanDirectFingers
void newCursor (int32 id , DirectFinger *);
void removeCursor (int32 id);
// CanDirectObjects
void newObject (int32 s_id , int32 f_id , DirectObject *)

;
void removeObject (int32 s_id , int32 f_id);

};

Listing 4.1: Example main app receiving DirectObjects and DirectFingers events.

application (e.g reacTIVision or any other applications that can send TUIO messages).
Once these messages are processed, this component detects and generates high-level
gestural events to be interpreted by the main application loop. It also allows program-
mers to implement new complex gestures as plug-ins, self-contained pieces of code that
recognize the gesture independently from the application logic.
The specification of the type of gesture events that the main program will be receiving
is done by creating a series of template-based mixin6 classes associated to the different
gestures, for instance to receive the events from the very basic gesture recognizer Input-
GestureBasicFingers (that provides finger-related events) the main class should inherit
from the mixin CanBasicFingers. As you can see in the example in Listing 4.1 this
technique required a great amount of C++ template jargon.
In addition, gesture recognizers are run in a different thread, as we were thinking that
computing-expensive recognizers could be implemented. As depicted in Figure 4.2, ges-
ture events are embedded into instances that are transfered from the gesture recognition
thread to the main application thread through a queue.
This modularity introduced the possibility of using gesture composition to define ges-
tures. That is, defining a gesture in terms of another simpler one. A double tap gesture,
for instance, can be defined as a sequence of tap gesture events, instead of using raw
touch events. As shown in Listing 4.2, composition involved manually processing the
events generated by the gesture recognizer used as the basis of the new gesture. Also,

6https://en.wikipedia.org/wiki/Mixin

89

https://en.wikipedia.org/wiki/Mixin

4 Empowering application developers

ofxTuioGestures

gesture recognition

gesture recognition

gesture recognition

gesture recognition

G
es

tu
re

M
an

ag
er

gesture recognition

tu
io

A
p

p

gesture handler

gesture handler

gesture handler

gesture handler

gesture handler

ofApp

Event
Queue

reacTIVision

O
S

C

Figure 4.2: Diagram of ofxTuioGestures event flow. Notice a strong separation between
gesture recognizers and the program, using different threads.

when creating a new gesture recognizer, the corresponding mixin should be created.
Listing 4.3 shows the related mixin from the previous gesture composition example.

This new version also includes an embedded simulator. The students no longer needed
to run TUIO Simulator to test the interaction when in absence of a real tabletop device.
Instead, as the simulator is now included in the same application, they would test object
and finger input directly over the generated graphical output (see Figure 4.3).

When the simulator is enabled, a right panel with a subset of figures is shown on one side
of the screen. These figures are labeled with the identifier that will be reported by the
TUIO messages to the system and have various configurable shapes. ofxTableGestures
includes six different figure shapes (circle, square, star, rounded square, pentagon and
dodecahedron), which are defined in a configuration file that includes the figure shape,
the figure identifier and the figure color.

The effort put in separating gesture code from the application logic yielded good results.
Complex gestures were more present in the projects developed with this framework
version. Even one project, ProjectWalk, (by Ciro Montenegro and Ricardo Valverde),
implemented the walk gesture, which consists of using the index and middle fingers
to imitate the walking of a person (see Figure 4.4). The complex task of correctly

90

4.1 ofxTableGestures: a framework for programmers

class InputGestureDummyTab : public CanBasicFingers <
tuioApp < InputGesture > >

{
std :: map < int32 , tabcursor *> tstamps ;
InputGestureBasicFingers * basicfingers ;

public :
InputGestureDummyTab ()
{

basicfingers = Singleton < InputGestureBasicFingers
>:: get ();

}
virtual void ReceiveCall (const char * addr , osc ::

ReceivedMessageArgumentStream & argList)
{

for (std :: list < TEvent * >:: iterator it =
basicfingers -> events . begin () ; it !=
basicfingers -> events . end () ; ++ it)

{
processTevent (* it);

}
}
// From CanBasicFingers
void addTuioCursor (int32 id , float xpos , float ypos ,

float xspeed , float yspeed , float maccel)
{

tstamps [id] = new tabcursor (xpos ,ypos ,
ofGetElapsedTimef ());

}
void updateTuioCursor (int32 id , float xpos , float ypos ,

float xspeed , float yspeed , float maccel)
{

tstamps [id]-> update (xpos , ypos);
}
void removeTuioCursor (int32 id)
{

if (tstamps [id]-> istab ())
{

TeventDummyTabTabed * evt = new
TeventDummyTabTabed ();

evt ->x = tstamps [id]->x;
evt ->y = tstamps [id]->y;
events . push_back (evt);

}
}

};

Listing 4.2: Example of gesture using composition. In this case the (naive) tap gesture is
implemented by receiving basic finger events from InputGestureBasicFingers
gesture recognizer.

91

4 Empowering application developers

template <class Base >
class CanDummyTab : public Base
{
public :

// Interface redefined by ofApp
virtual void tab (float x, float y) {}
// processing events callbacks
TEventHandler (TeventDummyTabTabed)
{

TeventDummyTabTabed * e = static_cast <
TeventDummyTabTabed * >(evt);

tab (e->x,e->y);
}
// registering
CanDummyTab ()
{

TRegistraCallback (CanDummyTab , TeventDummyTabTabed)
;

registerMeToInputGestureManager (Singleton <
InputGestureDummyTab >:: get ());

}
};

Listing 4.3: The mixin used to receive InputGestureDummyTab events form Listing 4.2.

Figure 4.3: Embedded simulator

92

4.1 ofxTableGestures: a framework for programmers

implementing this gesture required, however, a great amount of effort, which prevented
the team from completing the rest of the planned application.
Although this new version proved to provide a way to program complex gestures more
easily, we identified a common problem many students fell into: the difficulty of pro-
gramming multi-user gestures. Gestures from a single user perspective are quite straight-
forward to program, as no other type of input can interfere with the gesture. If the se-
quence of events that defines a double tap is receiving a tap and then receiving another
tap near the first within a time window, we do not have to worry about a tap happening
in another place of the surface by another user. By contrast, if expecting multi-user
input, such as in our case in tabletop applications, the recognizer has to be prepared to
handle multiple simultaneous gestures as well as undesired input data. See Listing 4.4
for an example.
Another problem that we identified was the difficulty of implementing gestures that
involved virtual elements on the surface. As gesture code was totally separated from the
application logic, it was very difficult to know if a gesture was entirely happening within
the area of a virtual object, as the information from those objects would be separated
from the gesture code and thus not available for the gesture recognizer. Although for
very quick and local gestures such as a tap or a double tap the problem is limited, for
gestures that take a non negligible amount of time or space it is difficult to know a
posteriori if the gesture developed inside the target element.

4.1.3 Multi-user gestures (2011)

Several changes were introduced to the framework to address the observed problems. As
a large amount of code was introduced and the code structure substantially changed,
there was a last change of name; the framework would definitely be called ofxTableGes-
tures7.
One of the efforts made in this version was the simplification of the template-based
programming interface. Many tedious event definitions are now automatized in order
to minimize the amount of C++ template jargon code to be written that was prune to
illegible bugs. As an example see how a declaration of an event type in the previous
version (Listings 4.5) is simplified in this new version (Listing 4.6).
Another big addition to the framework was the implementation of areas that virtual
elements can use to filter the gestures made on the surface, and that gesture recognizers
are aware of. When input events are received by the framework, they are matched to

7https://github.com/chaosct/ofxTableGestures/tree/0.X_series

93

https://github.com/chaosct/ofxTableGestures/tree/0.X_series

4 Empowering application developers

Figure 4.4: ProjectWalk

class TeventBasicFingersMoveFinger : public TTEvent <
TeventBasicFingersMoveFinger >

{
public :
int32 s_id ;
float xpos , ypos , xspeed , yspeed , maccel ;

};

template <class Base >
class CanBasicFingers : public Base
{

// ...
TEventHandler (TeventBasicFingersMoveFinger)
{

TeventBasicFingersMoveFinger * e = static_cast <
TeventBasicFingersMoveFinger * >(evt);

updateTuioCursor (e->s_id ,e->xpos , e->ypos , e->
xspeed , e-> yspeed , e-> maccel);

}
// ...

};

Listing 4.5: Declaring an event in ofxTuioGestures.

SimpleDeclareEvent (CanBasicFingers , updateTuioCursor , int32 ,
float , float , float , float , float);

Listing 4.6: Declaring an event in ofxTableGestures (first version). see the difference
with Listing 4.5.

94

4.1 ofxTableGestures: a framework for programmers

class InputGestureSingleUSerTap : public CanBasicFingers <
tuioApp < InputGesture > >

{
int32 _id ;
float _xpos , _ypos ;
float _tstamp ;
InputGestureBasicFingers * basicfingers ;

public :
InputGestureSingleUSerTap ()
{

basicfingers = Singleton < InputGestureBasicFingers
>:: get ();

}
virtual void ReceiveCall (const char * addr , osc ::

ReceivedMessageArgumentStream & argList)
{

for (std :: list < TEvent * >:: iterator it =
basicfingers -> events . begin () ; it !=
basicfingers -> events . end () ; ++ it)

{
processTevent (* it);

}
}
// From CanBasicFingers
void addTuioCursor (int32 id , float xpos , float ypos ,

float xspeed , float yspeed , float maccel)
{

_id = id;
_xpos = xpos ;
_ypos = ypos ,;
_tstamp = ofGetElapsedTimef ();

}
void removeTuioCursor (int32 id)
{

if (distance (xpos ,ypos , _xpos , _ypos)< MAXDISTANCE
and

ofGetElapsedTimef () - _tstamp < MAXTIME)
{

TeventSingleUSerTapTabed * evt = new
TeventSingleUSerTapTabed ();

evt ->x = _xpos ;
evt ->y = _ypos ;
events . push_back (evt);

}
}

};

Listing 4.4: An example of a gesture recognizer designed for single-user only.

95

4 Empowering application developers

class CircleButton : public tuio :: CanTap < Graphic >
{

public :
CircularArea a;
CircleButton ()
{

this -> Register (a);
a.x = 0.5;
a.y = 0.5;
a.r = 0.03;

}
void Tap (float x, float y)
{

// Do something
}
virtual void draw ()
{

ofSetColor (255 ,0 ,0) ;
ofCircle (a.x,a.y,a.r);

}
};

Listing 4.7: A simple button created using Graphic and Area.

the areas that contained those events. Then the gestures are recognized by the gesture
recognizer and its resulting event delivered to the correct receiver, the area owner.

Taking advantage from the area introduction, the notion of virtual graphic objects
(Graphic) with area was introduced. Those objects simplify the creation of graphical
event receivers such as interactive elements, buttons, and any other element of interest
(see Listing 4.7 for an example).

Another extra feature that was introduced is the ability to use a simplified XML-based
global configuration system (GlobalConfig), to get rid of magic numbers within the
application.

A very important difference with the previous year was how gesture recognition was
taught. We put more emphasis in the multiuser setting, and proposed a strategy to
simplify their programming. First we present a simple single-user gesture recognizer
implemented as a state machine that describes some states (one being the dead state)
and the input events that transition those states (see Figure 4.5 for the diagram, and
Listing 4.8 for its implementation).

After successfully coding a single-user gesture recognition as a state machine a meta
gesture recognizer is created that:

96

4.1 ofxTableGestures: a framework for programmers

class SM_MyTap
{

public :
enum State {dead , inside } state ;
int cursor_in ;
float xi ,yi;
float arrival_time ;
std :: list < TEvent *> & events ;
SM_MyTap (std :: list < TEvent *> & _events): state (dead),

events (_events){}
void newCursor (DirectFinger * f)
{

if (state == dead)
{

cursor_in = f-> s_id ;
xi = f-> getX ();
yi = f-> getY ();
arrival_time = ofGetElapsedTimef () ;
state = inside ;

}
}
void removeCursor (DirectFinger *f)
{

if (state == inside and f-> s_id == cursor_in)
{

if (f-> getDistance (xi ,yi) < MAX_DISTANCE and (
ofGetElapsedTimef () - arrival_time) <
MAX_TIME)

{
SimpleCallEvent (CanMyTap ,Tap ,(f-> getX () ,f

-> getY ()));
}
state = dead ;

}
}

};

Listing 4.8: A single user tap gesture recognizer implemented as a state machine.

97

4 Empowering application developers

Cursor i
inside

newCursor i (xi,yi)

removeCursor i (xf,yf)
Ff distance(xi,yi,xf,yf) < threshold
and waiting time < threshold:
 Emit MyTap event.

removeCursor z

Dead

Figure 4.5: A simple single-user tap gesture recognizer state machine.

• Has a list of individual gesture recognizer machines.

• Every time an input event is received it is delivered to every machine. But before
doing that, a new pristine machine is added to the list. After delivering the event,
it removes the machines on the dead state (see Figure 4.6, Listing 4.9).

This strategy allows a much simpler programming, as gesture recognizers do not have
to take into account multiple sources of events due to multi-user activity. Instead, the
pattern itself manages this simultaneity. It is important to note that those single-user
gesture recognizer machines should ignore any event unrelated to their gesture, and not
take it as a proof of failure.

The resulting projects confirmed the good idea of centering the focus to autonomous ob-
jects and multi-user interaction. Some of them had an important number of interactive
objects receiving complex gestures. As an example Logic Gate Simulator (by Leonardo
Amico, Carlos Casanova, Álvaro Muñoz and Raul Nieves) provided with an arbitrarily
large number of virtual elements representing logical gates that were manipulated in-
dependently with gestures such as on-finger drag, two-finger rotate, or X-crossing (see
Figure 4.7).

4.1.4 Simplifying the API (2012)

The latest changes made to ofxTableGestures8 were centered on a better API, and a
simplification of the code and internal mechanisms. Some parts had then sufficient

8https://github.com/chaosct/ofxTableGestures/tree/1.X_series

98

https://github.com/chaosct/ofxTableGestures/tree/1.X_series

4.1 ofxTableGestures: a framework for programmers

Cursor i
 dins

newCursor i (xi,yi)

removeCursor i (xf,yf)

si distancia(xi,yi,xf,yf) < llindar mínim
i temps en espera < llindar mínim
llançar event MyTap

removeCursor z

mort

Waiting

Event
Add a State Machine.
For every State Machine:
 Execute Event.
Dele te dead State Machines.

Cursor i
 dins

newCursor i (xi,yi)

removeCursor i (xf,yf)

si distancia(xi,yi,xf,yf) < llindar mínim
i temps en espera < llindar mínim
llançar event MyTap

removeCursor z

mort Cursor i
 dins

newCursor i (xi,yi)

removeCursor i (xf,yf)

si distancia(xi,yi,xf,yf) < llindar mínim
i temps en espera < llindar mínim
llançar event MyTap

removeCursor z

mort

State Machines list

Figure 4.6: Gesture recognizers are collections of simultaneous possible gestures.

Figure 4.7: Logic Gate Simulator

99

4 Empowering application developers

class InputGestueMyTap : public CanDirectFingers <
CompositeGesture >

{
public :
std :: list < SM_MyTap * > mes ;
InputGestueMyTap () {}
void newCursor (DirectFinger * f)
{

mes . push_back (new SM_MyTap (events));
for (std :: list < SM_MyTap * >:: iterator it = mes .

begin (); it != mes . end (); ++ it)
{

SM_MyTap * me = *it;
me -> newCursor (f);
if (me -> state == SM_MyTap :: dead)
{

delete me;
(* it)= NULL ;

}
}

mes . remove (NULL);
}
void removeCursor (DirectFinger *f)
{

mes . push_back (new SM_MyTap (events));
for (std :: list < SM_MyTap * >:: iterator it = mes .

begin (); it != mes . end (); ++ it)
{

SM_MyTap * me = *it;
me -> removeCursor (f);
if (me -> state == SM_MyTap :: dead)
{

(* it)= NULL ;
}

}
mes . remove (NULL);

}
};

Listing 4.9: Meta-recognizer for a tap gestures. It has a list of single gesture recognizers
to simultaneously handle several gesture instances.

100

4.1 ofxTableGestures: a framework for programmers

entity for themselves to be separated as a distinct add-on. ofx2DFigures9 is used to
create and display polygons and ofxGlobalConfig10 addresses the need of a simplified
configuration system.

One of the relevant changes made in this version was eliminating the separation of gesture
code and program logic in two different threads. After all the previous experiences
with all the previous projects, it seemed clear that gesture recognition, at least when
programmed with the mentioned strategies, was not as CPU consuming as we initially
thought. Eliminating this separation has the consequence of not requiring anymore
an event queue and thus the serialization of events, which was a key constraint in the
implementation.

At its turn, without the requirement of serialization, we no longer require our own
implementation of an event system. The standard OF event system can then be used
instead, with the benefit of its much cleaner interface and implementation. See for
instance how Listing 4.10 registers to tap events with a simple function call (in line 8).

Taking advantage from the new events interface, we introduced another event that is
not related to user input, but very useful for gesture recognition: time alarms. With
this event a recognizer can very easily dismiss failed gestures with timeouts, instead of
waiting for the next event to transit to the dead state.

The resulting projects were similar to the previous year in terms of complexity and
success. As a consequence of the API simplification, we received far less concerns about
the confusing or magic API than previous years.

A problem that was identified in the last two years (2011, 2012), is related to the state
machine strategy for multi-user gesture recognizers. As the single-user state machines
are independent from each other, there is no easy way to share information between
them. A typical problem will arise with, for instance the double tap gesture: three
consecutive taps result in two independent double tap gestures (one using the 1st and
2nd tap, and the other using the 2nd and 3rd). A central register of used taps can be
useful, and often is the solution that spontaneously emerges, but this only addresses the
coordination between instances of the same gesture.

The overlapping gesture problem also happens between instances of different gestures:
a tap recognizer and a double tap recognizer will not coordinate to get either one or
the other. A class registered to both gesture events will receive two separate tap events
along with every double tap.

9https://github.com/bestsheep1/ofx2DFigures
10https://github.com/chaosct/ofxGlobalConfig

101

https://github.com/bestsheep1/ofx2DFigures
https://github.com/chaosct/ofxGlobalConfig

4 Empowering application developers

1 class Button : public Graphic
2 {
3 public :
4 float x,y;
5 Button ()
6 {
7 x = y = 0.5;
8 registerMyEvent (InputGestueTap ::I().Tap , & Button ::

tap);
9 }
10 void draw ()
11 {
12 ofSetColor (255 ,0 ,0) ;
13 ofCircle (x,y ,0.1) ;
14 }
15 void tap (InputGestueTap :: TapArgs & args)
16 {
17 // Do something
18 }
19 bool Collide (ofPoint const & point)
20 {
21 float distance = point . distance (ofPoint (x,y));
22 return distance < 0.1;
23 }
24 };

Listing 4.10: A simple button created using Graphic. Notice how registering events is
no longer done with mixins (for instance Listing 4.7) but with the observer
pattern.

102

4.1 ofxTableGestures: a framework for programmers

year abandoned course total abandon rate
2009 12 38 31,58%
2010 2 32 6,25%
2011 5 42 11,90%
2012 2 26 7,69%

Table 4.1: Abandon rate per year in TSI course

The alternative is to implement all the gestures in a single gesture recognizer, but this
breaks the whole modularity and compositions of the gestures. The idea of creating
a mechanism for automatically resolving this overlapping situation was the spark that
started the development of GestureAgents (see Chapter 5), which is heavily influenced
by this problem.

4.1.5 Discussion

After those years providing a framework for the use of students in a tabletop application
creation course, the experiences lead to some reflections on the useful parts of such
framework and its consequences.

It seems that the most important feature introduced to the framework was actually
providing the needed libraries to load images, play sounds etc provided by OF. Apart
from the experience related to the complains and encountered difficulties, a sign of that
can be that a higher proportion of students abandoned the course the first year compared
to the later years (see Table 4.1), although this data should be treated with caution as
many other causes can explain this difference.

Although important, we think that forcing the separation of gesture code and program
logic, the other important change made in the second year, did not have a relevant impact
on abandon rates, in contrast with providing library. Instead we think that gesture
infrastructure tend to impact mainly on the quality and complexity of the projects in a
gesture interaction level, while the lack of very basic capabilities (such as image loading
libraries) are perceived as essential parts of the projects and can be key to desisting.

On the impact of gesture infrastructure, we have seen that the gesture complexity and
quality are tied to the provided basis. As this basis is developed and enhanced, the
needed effort to reach such quality decreases. This is visible with the impact of multi-
user gesture strategies, area capabilities, and autonomous interactive virtual objects
facilities.

The fact that much of the effort on this framework was devoted to provide gesture recog-

103

4 Empowering application developers

nition infrastructure is not an arbitrary choice, the experience shows that programming
and testing gesture recognizers is the most difficult and problematic task for the stu-
dents. This has many causes, such as the abstract nature of event-based programming
or the impossibility of accurately test gestures in the simulator due to the limitations of
mouse input.

The problem of having independent, easy to write, composable, modular gesture recog-
nizers is not trivial and has proven challenging. A continuation of this effort is done in
GestureAgents, Chapter 5.

In conclusion, we think that this framework has effectively addressed the important issues
when programming multi-user gesture-expressive tabletop applications, in the context
of unexperienced programmers. Apart from the students of this course, the framework
has been used in other external projects, such as master thesis or projects for other
departments (such as (Vouloutsi et al., 2014)).

4.2 MTCF: a platform for sound and music tabletop creation

Apart from the need of frameworks by the application programmers, we identified that
artists and other non-programmers also need some kind of facilitation to adapt their
works into a tangible tabletop application. The fact that some tangible applications
related to specific fields such as art and music already exist, such as the Reactable, also
creates the need to modify them adding additional functions or objects by people from
related fields, such as sound and music artists.

As we have seen earlier, creating a graphical interactive user interface for tangible table-
tops is usually already a difficult task, even if using frameworks that facilitate this kind
of programming. Additionally, sound artists work hard on the auditory part, as it is the
core of their contribution, probably in another specialized programming language. Tak-
ing into account these considerations, it may be difficult to acquire the required skills for
being capable of programming the visual interface and the audio component, or to find
a single programming language or framework supporting well these two components.

A simple solution to this last problem, as presented by Hochenbaum et al. (2010) or
Fyfe et al. (2010), is to divide the project into two different applications: one focused
on the visual feedback and another focused on the audio and music processing, as this
allows having different programming languages and frameworks. However, to divide the
tasks will not itself eliminate the need of programming on both sides. Musical Tabletop
Coding Framework (MTCF) (Julià et al., 2011) was designed to simplify these technical

104

4.2 MTCF: a platform for sound and music tabletop creation

difficulties.

MTCF began with a specific need. As we were mentoring master students of the Sound
and Music Computing (SMC) and Cognitive Science and Interactive Media (CSIM) mas-
ters, some of their final projects were related to music; and, in particular, as we usually
worked with the Reactable, related to music or sound effects that would be added to the
current Reactable system.

While those projects were meant to be integrated to the current code of the Reactable,
this integration was far from easy: the Reactable program itself was divided in several
parts (graphical, messaging, audio) that shared some configuration files but not all,
many of the parameters were hard-coded, and creating the code to add new functions
and objects required very advanced techniques. At the end, the amount of work needed
to integrate the finished prototype into the Reactable ecosystem was unassumible for a
master student with no prior knowledge of the inner working of the Reactable.

This issue was the original drive to create MTCF. It consisted basically of a front-end
graphical engine that mimicked the way Reactable presented controls and sound waves,
and communicated with Pure Data, where the sound was computed. This first version is
described in Section 4.2.1. After some time, MTCF evolved to provide more possibilities
to creators, drifting away from the original Reactable-like interface and allowing more
freedom. This second version is presented in Section 4.2.2.

4.2.1 A Reactable-like playground

MTCF is an open source platform11 for the creation of musical tabletop applications
that takes a step forward in simplifying the creation of tangible tabletop musical and
audio applications, by allowing developers to focus mainly on the audio and music pro-
gramming and on designing the interaction at a conceptual level, as all the interface
implementation will be done automatically.

MTCF provides a standalone program covering the visual interface and the gesture
recognition functions, which communicates directly with Pure Data (Puckette, 1996)
(Pd), and which enables programmers to define the interactive objects and their control
parameters, as well as the potential relations and interactions between different objects,
by simply instantiating a series of Pure Data abstractions.

The choice of Pd as the programming language for sound artists is not arbitrary; apart
from being open source, Pd is also usually taught in many sound, music and interaction
11https://github.com/chaosct/Musical-Tabletop-Coding-Framework/releases/tag/0.1b

105

https://github.com/chaosct/Musical-Tabletop-Coding-Framework/releases/tag/0.1b

4 Empowering application developers

Figure 4.8: MTCF Simulator.

courses in various masters. It is broadly used by artists dealing with sound, music or
image. It is also very similar to its very popular closed source equivalent, MAX/MSP,
also from the same author, so artists and musicians knowing MAX/MSP can very easily
adapt to it.

Dealing with input data and the GUI

As MTCF is implemented with ofxTableGestures (see Section 4.1) and provides means
for creating tabletop applications, it can be seen as a specialized and simplified subset
of ofxTableGestures; while it does not provide all of ofxTableGestures’ functionalities, it
simplifies enormously the programming tasks by putting everything on the Pd side. Of
course, one of the advantages of using this add-on is its simulator that helps testing the
programs without the need of accessing the tabletop hardware (see Figure 4.8).

MTCF receives data from the TUIO tracking application (i.e. reacTIVision), processes

106

4.2 MTCF: a platform for sound and music tabletop creation

it, displays the graphic feedback and sends the filtered data to Pd via OSC messages.
At this stage, MTCF only draws the figure shapes and the fingers’ visual feedback, all
in their correct positions. The remaining graphical elements (such as the waveforms and
the relations between the figures) are drawn on demand, according to the additional
information that is sent back via OSC messages from Pd to MTCF (see Figure 4.9).

By default, MTCF pucks only convey three basic parameters: X position, Y position
and rotary angle. Two additional touch-enabled parameters can be enabled for any
specific object in Pd, the object bar and the finger slider, which are displayed as two
semicircular lines surrounding the puck, keeping the orientation towards the center of
the table, as shown in Figure 4.10. Also, parameters resulting from the relations between
pairs of pucks (distance and angle) can be activated in Pd. Coordinates and distances
ranges relate to the coordinate system in ofxTableGestures, which considers the interface
to be a circle of diameter equal to 1, centered in (0.5, 0.5). The object bar conveys a
value between 0 and 1 that can be changed by rotating the tangible. The finger slider,
represented by a thinner line with a dot that can be moved using a finger, also ranges
between 0 and 1.

Using MTCF from Pd

MTCF was designed to be used along with Pd, as it has become one of the most popular
languages for real time audio processing and programming. The main idea of this frame-
work was to allow expert Pd users to interface their patches using a tangible tabletop
setup. For this, MTCF provides nine Pd abstractions that transparently communicate
with MTCF graphical interface, and that will be used to define the objects, the rela-
tions between them, and the data the programmer wants to capture from the tabletop
interface. Not all of these abstractions have to always be used, as this will depend on
the characteristics of the designed musical application interface.

Only one abstraction is mandatory, the one responsible for all OSC communication
between the Pd patch and MTCF: [basicTangibleTabletop]. Its single argument is
the address of the computer running MTCF. This would typically be localhost, although
changing this address can be useful in some situations, as when working with a shared
tabletop. Because of implementation details, one and only one instance of this object
must exist in the Pd program.

107

4 Empowering application developers

reacTIVisionMTCF

videovideo

TUIO

Pure Data

OSC

sound

pr
oj

ec
to

r cam
era

tangibles tagged with fiducials

(visual feedback)

multitouch control

diffuse infrared
illumination

Figure 4.9: MTCF data flow.

Figure 4.10: Tangibles with different feedbacks and controllers. From left to right, an
object without extra controls, an object with a bar, an object with a slider,
and an object with both a bar and a slider.

Object 10

objDistance 20 28

connectWave 11 12

drawWave

BGchanger

Fingers

finger

FCchanger

basicTangibleTabletop localhost

Figure 4.11: MTCF Pd Abstractions.

108

4.2 MTCF: a platform for sound and music tabletop creation

Defining objects and parameters

The programmer can use some additional abstractions to define what physical pucks will
be allowed for use on the tabletop. By instantiating [Object n], a programmer allows
the puck with the fiducial id code n to be used. A slider and a [0, 1] rotatory parameter
can be (de)activated around it, if desired, by sending messages to it. Only when these
elements are active Pd will receive this additional information. Outlets in [Object]

output the presence of the puck (Boolean), its position, orientation, and if configured,
its slider and rotary parameter values.
Inspired by the Reactable paradigm, which allows the creation of audio processing chains
by connecting different objects (such as generators and filters), MTCF also allows to use
the relations between different pucks and makes them explicit. However, unlike in the
Reactable, MTCF is not limited to the creation of modular synthesis processing chains;
any object can relate to any other object independently of their nature. This allows, for
example, to easily create and fully control a tangible frequency modulation synthesiser
(Chowning, 1973), by assigning each carrier or each modulator oscillator to a different
physical object; or a Karplus-Strong plucked string synthesiser (Karplus and Strong,
1983) by controlling the extremes of a virtual string with two separate physical objects.
On the counterpart, MTCF do not facilitate Pd dynamic patching (Kaltenbrunner et al.,
2004), so it is not capable of producing a fully functional Reactable clone easily, neither
was this its main objective. In MTCF, the connections between the pucks are made
explicitly by the programmer in the Pd programming phase. This is attained by using
[objDistance m n], which continuously updates about the status of this connection,
and (if existent) about the angle and distance between objectsm and n. The programmer
can also specify whether she wants this distance parameter to be drawn on the table by
sending a Boolean value into the [objDistance] inlet.

Drawing Waves

Also inspired by the Reactable, MTCF can easily show the sound (in the form of waves)
going from one object to another. This can be achieved by using the [connectWave]

object. This abstraction takes two parameters that indicate the object numbers between
which the wave should be drawn. As indicated before, this waveform does not necessarily
indicate the sound coming from one object into the other, but can rather represent the
sound resulting from the interaction between two combined objects, or any other sound
thread from the Pd patch. An audio inlet and an outlet are used to take the waveform
and to act as a gate, allowing the audio to pass only if the two pucks are on the surface

109

4 Empowering application developers

(and therefore the waveform exists). This ensures that no unintended sound will be
processed neither shown, when its control objects are removed. Additionally, a control
inlet lets the patch to activate and deactivate this connection.

This way of drawing waveforms has some consequences: first, waveforms are drawn
by default between pucks, complicating drawing waveforms directly between 2 arbi-
trary points, such as from one object to the center, as the Reactable does. This can
be overcome by using a simpler Pd abstraction, [drawWave] with this very purpose,
drawing waves between 2 points. The second but very important consequence is that
the audio connection between two physical pucks is a Pd object. Instead of having Pd
audio connections between [Object] abstractions, the programmer must therefore use
[connectWave] abstractions, which simply send the waveform information to MTCF
for drawing. This can be confusing, specially when chaining multiple physical pucks im-
itating an audio processing chain: the programmer must then consider all the possible
connection combinations (see Fig. 4.12 for an example).

Extra features

For more advanced interaction with fingers, additional abstractions are also provided.
[Fingers] gives full information of the position of all fingers detected on the table,
while [finger] can be used to extract individual fingers information (see Fig. 4.13).
These abstractions can be used to control less obvious parameters.

Two additional abstractions can be used for visual purposes: [BGchanger] and [FC-

changer] respectively allow changing the background colon of the tabletop and the
color of the fingers’ trailing shadows. Changing colors, for example according to audio
features, can create very compelling effects.

Example projects

Fig. 4.14 shows (a) a Karplus-Strong generator using two objects for controlling the
length of the string and one additional object as the plucking pick, (b) a midi controller
for Ableton Live12, and (b) a speed-controlled wave player with a band-pass filter. All
three examples, developed in a half-day workshop, achieved interesting sound and control
results.

Another example is the implementation of a vowel synthesis engine in Pd made by a
SMC master student. He used MTCF to test it in real time as an interactive instrument,
12https://www.ableton.com/en/live/

110

https://www.ableton.com/en/live/

4.2 MTCF: a platform for sound and music tabletop creation

noise~

dac~
dac~

bp~ 400 10

* 10000

* 10
== 0

- 0.1

- 0.1
Object 4

objDistance 1 4

objDistance 4 3

connectWave 1 3

connectWave 1 4

connectWave 4 3

1 4 3
(optional)

source filter sink

connection 1->3
in case there is
no object 4

connection 4->3

connection 1->4

Figure 4.12: A processing chain example. A puck (1) is a noise generator, another (4) is
a filter, and the remaining one (3) is an audio sink (i.e. the speakers). The
programmer must consider the connections when puck number 4 is present
(1→ 4→ 3) and when it is not (1→ 3).

Fingers

0 0finger

0 0finger

0 0finger

Figure 4.13: A Pd structure to receive information of the several fingers on the surface.

111

4 Empowering application developers

Figure 4.14: Free project results: (a) a Karplus-Strong generator, (b) a MIDI controller
and (c) a band-pass filter.

Figure 4.15: Our little choir vowel synthesis engine in MTCF.

called Our little choir13(author: Alexandros Katsaprakakis) with excellent results (Figure
4.15).
Those and other previous experiences indicate that MTCF is not only a very valuable
tool for the quick development and prototyping of musical tabletop applications, but also
an interesting system for empowering discussion and brainstorming over some concepts
of software synthesis control and interaction.

4.2.2 Allowing interface design

As useful as MTCF was, users often asked for features that were not present, such as
drawing buttons and other GUI elements other than using objects as controls. To open
up the user base, we decided to add functionality by adding the creation of virtual
elements on the surface. This would also be useful for students of Curs de Disseny de
13Best seen in video: https://vimeo.com/groups/main/videos/25966968

112

https://vimeo.com/groups/main/videos/25966968

4.2 MTCF: a platform for sound and music tabletop creation

loadbang

;

pd dsp 1

mtcf-comm

Connected

127.0.0.1

Disconnect

Device IP:

Autodetect IP

Connect

Control Port:

Interface Port:

1235

1234

0

buffer

mtcf-reset

ip localhost

Figure 4.16: Common MTCF elements.

Sistemes Interactius Musicals (CDSIM) and Master Universitari d’Art Digital MUAD
masters, with a less sound-processing-centered background. The core idea of this change
consisted on providing functions to create virtual elements such as polygons and text,
which would be displayed on the surface and be interacted with. The results of the
interaction would be sent to Pd again to be used in the program.

Common elements, renamed

To homogenize the Pd abstractions’ names and to prevent name collision with objects
bundled with Pd, all the abstractions’ names were named starting with the mtcf- pre-
fix. This includes the original abstractions from the previous version, for instance
[basicTangibleTabletop] would become [mtcf-comm]. Also, new functionali-
ties were included to ease the connection between the MTCF front-end and the Pd
client: buttons to connect and disconnect the client, connection status display, or a
message buffer activation switch (see Figure 4.16).

Virtual elements: polygons and text

Two types of graphical elements were introduced in MTCF: polygons and text. Those
can be declared and modified in Pd, and then automatically displayed in the front-end.
The number of those elements is unlimited, and can be individually controlled within
Pd.

Polygons can be created with [mtcf-polygon] and have arbitrary shapes, defined by
the positions of their vertices with [addvertex (messages. Helpers exist to ease this

113

4 Empowering application developers

process in common cases such as squares, rectangles and circles (see Figure4.17). Their
appearance can also be defined by choosing their color (solid or translucent), their stroke
presence and color, etc (see Figure 4.18). Additionally, textures can be used as an infill
of the figures.
Polygons and Texts can be transformed through the surface: they can be translated,
rotated, and scaled to the desire of the programmer (see Figure 4.19). These trans-
formations can be chained, in a way similar to Gem (Danks, 1997) or OpenGL; the
transformation operations are accumulated in a 2D transformation matrix, so translat-
ing and rotating is different from rotating and translating (see Figure 4.20).
Interaction inside polygons is captured by the front-end and exposed in Pd through the
outlet of [mtcf-polygon]. Outgoing messages prepended with finger convey the finger
information related to touches inside the polygon and can be unpacked with chained
[mtcf-finger] objects. This is very useful to create interactive elements such as but-
tons.
Text elements are instantiated with [mtcf-text] and transformed in the same way
as polygons. The color can also be defined likewise. A [write Some text(message
changes the caption to Some text. Apart from normal scaling, the special Pd object
[mtcf-textsize] is provided to uniformly scale all texts.

Projects

The ability to create virtual interactive elements and text empowered the users to create a
greater variety of tabletop application interfaces better suited to the interaction needs of
their applications. This was extensively used by CDSIM students, as they had a specific
teaching module for tabletop interaction, where they had to create a tabletop musical
instrument. The results ranged from static button-based interfaces, such as Electrobichos
(Authors: Mauricio Iregui and Nicolás Villa), through zoom interfaces, such as Zoom
Interactivo (Authors: Leon David Cobo and Patricia Sanz), to more experimental
dynamic physical simulation interfaces such as MTCF-Gravity (Eloi Marín), all depicted
in Figure 4.21.

Conclusions

What started being a way to cover a specific need, such as experimenting with new
functionality in the context of the Reactable, was at the end enhanced to be useful for
other collectives that wanted to create tabletop applications other than mere additions
to the Reactable.

114

4.2 MTCF: a platform for sound and music tabletop creation

mtcf-polygon

mtcf-rectangle 0.1 0.05

mtcf-polygon

mtcf-square 0.1

mtcf-polygon

mtcf-circle 0.04 10

mtcf-polygon

addvertex -0.05 0 0.05 0 0 0.07

Figure 4.17: MTCF Polygon shapes.

mtcf-polygon

mtcf-rgbcolor 255 0 255

mtcf-polygon

mtcf-color 255 0 255 100

mtcf-polygon

mtcf-rgbcolor 255 0 0 3 1

mtcf-stroke

mtcf-polygon

mtcf-hide

Figure 4.18: MTCF Polygon appearance options.

mtcf-polygon

mtcf-translate 0 0

mtcf-polygon

mtcf-rotate 0

mtcf-polygon mtcf-polygon

mtcf-scalexy 0 mtcf-scale 1 1

Figure 4.19: MTCF transformations.

115

4 Empowering application developers

mtcf-translate 0.6 0.8

mtcf-rotate 45

mtcf-scale 1 1

mtcf-polygon

Figure 4.20: MTCF transformations can be chained.

It seems that the potential usefulness for tabletop interfaces for music-related users is
specially high. The fact that many different collectives profited from this framework,
even given that, because of the nature of the device, their development would probably
not be used again, shows that there exists an interest.

We can extract the observation that the usefulness of tabletop applications is not nec-
essarily linked to its gestures’ complexity. Even though in section 4.1 we stress in this
aspect and its benefits, the experience with MTCF shows us that some activities favor
other types of gestures that do not require complex gesture recognizers. The difference
between the two is whether the gestures are or are not eminently symbolic. An applica-
tion that identifies commands and instructions performed by users, given the trajectory
of their interactions (for instance if it tries to distinguish a drawn circle from a cross),
will need specific code to recognize whether a sequence of events effectively matching a
gesture is present. Otherwise, an application that creates a direct mapping between the
trajectory and a particular parameter of the application (for instance in sound synthesis),
in spite of the expressiveness of the gestures; does not need to identify any particular
feature of the gesture to get the desired effect.

This type of interaction, direct mapping, is specially useful in expressive and artistic

116

4.3 Conclusions

(a) Electrobichos (b) Zoom Interactivo (c) MTCF-Gravity

Figure 4.21: CDSIM example projects using MTCF

applications, as the control is maximum and direct, promoting an intimate relationship
with its result. Sound and music specially benefit from this relationship. Unfortunately,
direct mapping does not cover the needs of having a big action dictionary or multiplexing
the interaction by the gesture type, and so other activities requiring a richer and formal
interaction language cannot benefit from it directly.

So, regarding the two presented frameworks, we can say that they not only address
different collectives, but also, they address different needs. MTCF will be more useful for
applications with direct mapping, such as artistic and expressive, while ofxTableGestures
will better address the problems from creating applications with formal complexity.

4.3 Conclusions

We developed two frameworks supporting the creation of tabletop applications, focused
in different collectives with different needs: programmers and artists. Through the
development we adopted an iterative developing strategy based on the feedback of our
users: students. A continuous feed of new developers allowed us to enhance and fix our
frameworks every year. This strategy proved useful.

The ofxTableGestures experience shows us the important role of third party libraries to
speed up work on menial and uninteresting jobs and focus on the actual application.
It also shows us how providing infrastructure that enforces good coding practices helps
programmers to achieve good results, and how gesture programming is a difficult task
that can benefit greatly from such good practices.

The MTCF experience shows us that there was a need for artists to have a low-entry
point for tabletop programming. This need, although originally focused on enhancing
existing applications, soon evolved to allow totally new, unrelated work.

The results of new developers making tabletop applications in both frameworks, show

117

4 Empowering application developers

a high preference for game and musical applications. This is expected, as the most
evident tabletop affordances are direct manipulation, spatial multiplexing and real-time
interaction. Something that is very useful in games and music.

We have approached gesture recognizer programming with ofxTableGestures and seen
that, despite the several improvements to make it easy to code, some problems still per-
sist. Those mentioned problems are related to the disambiguation between gestures, or,
in other words, how to know if some sequence of input events relate to one gesture or
another, but not both. This same problem is central when having multiple applications
running at the same time in a tabletop: input events need to be distributed to the appli-
cations’ gesture recognizers. Next Chapter, Multi-Application systems: GestureAgents,
addresses this problem in both circumstances, disambiguation inside an application and
between applications.

118

5 Multi-Application systems:
GestureAgents

Until now, we have been working on tabletops that presented a single ap-
plication to the users: both the applications presented in Chapter 3 and the
frameworks from Chapter 4 deliberately take all the space on the tabletop
surface and capture all the input data. In this chapter we deal with the
problem of having multiple applications running simultaneously in a single
computing device that presents a shareable interface. We explain why this
problem is relevant, and how we attempt to solve it by creating the Ges-
tureAgents framework.

5.1 Introduction

Shareable interfaces are a common subject of study in the field of CSCW. Tabletops
and vertical displays, for instance, are considered, in many ways, a good approach to
promote collaboration, a circumstance that is valuable for solving complex tasks.

In the personal computer context (still the leading professional platform), complex task
solving is often supported by the use of a combination of several unrelated software
tools. However, the systems developed to study collaboration in shareable interfaces
usually feature a single ad-hoc application that tries to cover all the aspects involved
in the particular tested task. This approach is valuable for studying many mechanisms
of collaboration, as it constitutes a controlled environment in which the interaction
dynamics can be tested, however, it still does not really represent existing real-world
practices.

Previous experiences in other kinds of interfaces, such as PCs or hand-held devices,
suggest that the real world use of new general purpose computing devices will need
some kind of multi-tasking capabilities if these aim to support general and potentially
complex task solving features and if, in short, these aspire to become useful to the general

119

5 Multi-Application systems: GestureAgents

public. And yet, multi-tasking features in shareable interfaces may have deep differences
even within single-user ones.

5.2 Collaboration in shareable interfaces

When designing collaborative computing appliances, we are in risk of losing essential
elements previously present in personal computing and ending up with a useless system.
Reviewing the features that made personal computing useful to people can help us to
prevent the latter from happening. The qualities that contributed to make the personal
computing platform successful and useful to its users are partially analyzed in Sections
2.1 and 2.2.3. We focused on multi-tasking as a key element to such systems, as we feel
that it is often overlooked in current collaborative computing systems.

Collaboration has also been traditionally tied to complex task completion: group meet-
ings are a common strategy to shed light into difficult problems. Big problems can be
divided into smaller ones that can be redistributed (Strauss, 1985; Schmidt and Bannon,
1992), and points of view can be exchanged (Hornecker and Buur, 2006). Even in the
computer era, the practice of physical meetings seems to be still (if not more than ever)
prevailing. Empowering collaboration with computers is the primary goal of Computer
Supported Collaborative Work (CSCW) field, and it relates directly to this group meet-
ing problem. In this discipline, two different (but intersecting) problems are studied:
In co-located CSCW all group individuals are present in the same workspace while in
remote CSCW individuals are located in different places and all personal interaction
is mediated by computers. Both problems deal with several users interacting with the
same (local or distributed) system, leading to multi-user interaction.

Non co-located settings for multi-user interaction in a single virtual workspace, such
as web-based collaborative systems (Bowie et al., 2011), or general cases of collective
distributed work on single documents (groupware) (Ellis and Gibbs, 1989), are very
common and widely studied. Co-located collaboration around computers, on its turn,
already exists on a daily basis. Work meetings are often complemented with laptops,
tablets, smartphones and other computing devices.

Needless to say, desktop and laptop computers have not been designed for co-located
multi-user interaction, but for individual usage. Since they feature a single keyboard
and a single pointing device, when used in multi-user setups computers inevitably lead
to an interaction “bottleneck” with the users (Stanton et al., 2001; Shaer and Hornecker,
2010).

120

5.2 Collaboration in shareable interfaces

The use of computers in this context is thus still individual, lacking the social affordances
that can be provided by “shareable” interfaces, or systems that have specifically been
designed for co-located collaboration. Affordances, which according to scholars such
as Hornecker and Buur, should particularly consider Spatial interaction and Embodied
Facilitation (Hornecker and Buur, 2006).

Shareable interfaces, on their side, alleviate the interaction “bottleneck” by creating
multiple interaction points, preventing individuals from taking over control of the com-
puting device (Hornecker and Buur, 2006). Multiple interaction points do also promote
user participation, lowering thresholds for shy people (Hornecker and Buur, 2006), and
can provide means for bi-manual interaction, promoting a richer gesture vocabulary.

Typical types of interfaces developed for these collaborative scenarios are tabletop inter-
faces, which allow users to interact with horizontal displays using touch and/or pucks;
vertical interactive displays (such as interactive whiteboards) in which users interact
using pens or touch; tangibles which allow users to interact with physically-embedded
artifacts and tokens (Rogers et al., 2009; Shaer and Hornecker, 2010); or body gestural
interfaces,such as camera-based systems, which allow users to interact using their bodies
(Shaer and Hornecker, 2010).

As a distinct characteristic, all these interfaces allow users a shared access to the same
input and output physical interfaces, as opposed to typical groupware systems, where
each user has its own interface device (Rogers et al., 2009). Besides collaboration,
these shareable interfaces also show affordances more directly related with complex task
completion. Epistemic actions, physical constraints, and tangible representations of a
problem may contribute to problem solving and planning (Shaer and Hornecker, 2010).
Spatial multiplexing allows a more direct and fast interaction (Fitzmaurice, 1996) while
leveraging the cognitive load (Shaer and Hornecker, 2010); tangible objects facilitate
creativity (Catalá et al., 2012); and rich gestures lighten cognitive load and help in the
thinking process while taking advantage of kinesthetic memory (Shaer and Hornecker,
2010) (these strengths are discussed in Section 3.1).

This combination of social and personal affordances suggest that shareable interfaces
are indeed well suited for complex task completion: apart from promoting collaboration,
they provide individual and collective benefits that help completing these goals.

121

5 Multi-Application systems: GestureAgents

5.3 Multi-Tasking Shareable Interfaces: Current Situation
and Related Research

Despite all the aforementioned affordances, and considering all the multi-task desirable
properties, the majority of the currently available shareable interface systems created
for research purposes consist of a single program that already includes all the necessary
facilities to cover every subtask of the main activity. This is, however, consistent with
the purpose of most research, because, in a collaboration co-located setting, CSCW
researchers typically focus their investigations on the human factors in multi-user in-
teraction, such as how input devices can be more effectively distributed between users
in order to optimize group dynamics (Kim and Snow, 2013; Verma et al., 2013), or on
studying different strategies to access digital and physical items from the perspective of
digital content sharing (Verma et al., 2013), control sharing (Jordà et al., 2010; Kim and
Snow, 2013), or proxemics (Ballendat et al., 2010).

A similar enclosing phenomenon happens with real-world products using shareable in-
terfaces. While some of them focus on a very specific domain, avoiding to address more
general problems (e.g. the Reactable (Jordà, 2008) approaches collaboration from the
very specific and peculiar needs of musical collaboration (Xambó et al., 2013)), many
others, such as interactive whiteboards, desist about using any particular multi-user
interaction, thus directly presenting the PC graphical system (Beauchamp, 2004); and
when addressing multi-tasking, they are single tasked or simply present methods to
change the full-screen single active application (Ackad et al., 2010).

However, having multi-tasking capabilities in shareable interfaces seems to be in strict
consonance with their goal of promoting and enabling collaborative work as, for instance,
the recommendations by Scott et al. (2003) for collaborative tabletops are related: Multi-
tasking provides a way to have simultaneous activities, allowing the transition between
them (support fluid transitions between activities) and between personal and collective
ones (support transitions between personal and group work). Also, several tasks can be
done concurrently, by several users (support simultaneous user actions).

Therefore, it would seem clear that real world shareable interfaces should, at least,
support some of the characteristics that have turned the personal computer into such a
valuable tool, such as general purpose computing (and third party application support)
and multi-tasking, which, sadly, are not yet typically found on most current research
prototypes.

We argue that the lack of those features may not be an accident, neither an unconscious

122

5.3 Multi-Tasking Shareable Interfaces: Current Situation and Related Research

omission: the combination of multi-tasking -a feature so closely associated with single-
user devices -with multi-user interaction, is not trivial; even less when combined with rich
interfaces such as the ones provided by tabletops. And yet, we want to stress our vision
that real world collaborative systems should allow third party applications (programs)
to run and be interacted simultaneously. More precisely, every program should support
multi-user input, and a single user should be able to interact with several applications
at the same time.

An inspiration could be a table for group work. It is a shared space where users use
tools; some share them while others do not. There can be several activities done at
the same time, with tools used across them. A post-it note can be used on a shared
map; but also on a private book. A map can be used for multiple purposes at the same
time. In spite of all these potential concurrent activities, the designer or maker of the
table should probably not explicitly provide support for any of them, not worrying, for
example, whether a tea cup is compatible with a sheet of paper.

Imagine a Tabletop system were tangible objects and touches can be both used as input.
On this Tabletop there is a music generating application like the Reactable that works
by placing objects on the surface, manipulating virtual controls and drawing waveforms
with fingers on the surface. On this same Tabletop we also have a typical application for
photo sorting that can detect camera devices on the surface and displays digital pictures
on the table. Both applications potentially use the whole tabletop surface. Imagine then
two people wanting to sort pictures and play music on this same Tabletop. Our vision
is that one user could be grouping pictures using a lasso gesture while another could be
changing the loop of one cube and muting the output of an oscillator by crossing out the
waveform with a finger, without things interfering with each other. On this concurrent
multi-user multitasking interface, everything can occur at the same time in the same
shared space.

This is not a novel or revolutionary idea and some works have, in fact, previously at-
tempted at the creation of multi-user multi-task systems.

Dynamo (Izadi et al., 2003), proposes a shared surface for sharing digital data between
several (remote) users, focusing on ownership and permissions over programs and docu-
ments in a shared multiuser WIMP system. Users may use pairs of mouse-keyboard to
interact with a system that presents local and shared interfaces. In shared interfaces,
it focuses the attention on methods for preserving and sharing control over applications
and files. It does not, however, deal with co-located access to the interface, nor with
third party applications in the shared space.

123

5 Multi-Application systems: GestureAgents

LACOME (Mackenzie et al., 2012) also depicts a common shared surface in which remote
single-user PC systems are presented as manipulable windows. Third party applications
are allowed, but those run in the logic of the former single-user systems. A similar
concept is developed in TablePortal (AlAgha et al., 2010), where remote tabletop ap-
plications and activity is presented inside manipulable windows. In this case remote
applications are multi-touch enabled, although its aim is to be used by a single user, the
teacher of a classroom.

Ballendat et al. (2010) presents us with a series of devices, one of them a vertical share-
able interface, which uses information such as the relative positions and orientations of
the users, the devices, and other objects, and specifically their pairwise distances (prox-
emics), for affecting the interaction. As this information is shared between all the devices
(as an Ubicomp ecology), and each device can run a different program, we could consider
this example as a shared interface (based on the relative positions and orientations) with
multi-tasking. The proposal does not describe, however, any strategy for coordinating
the different programs, but rather assumes that they are created together as parts of the
same system.

WebSurface (Tuddenham et al., 2009) presents a tabletop system with virtual windows
that can be freely manipulated. These windows are web browsers presenting conventional
web pages that can be interacted by the users. It could be argued that web pages are
a form of third-party applications, although enclosed in a single-user paradigm. This is
also the case of Xplane (Gaggi and Regazzo, 2013), a software layer presenting several
tiled windows on the surface with a distinct focus to enable fast development of tabletop
applications, although it does not provide window transformation abilities.

Multi Pointer X (MPX) (Hutterer and Thomas, 2007) tries to transform PCs into shared
systems by allowing them to use several pairs of keyboard and mouse. As PCs are already
multi-task and third-party application enabled, the result would be a shared multi-user
multi-tasking system. Using a PC setting and applications, however, does not help to
easily allow multi-user interaction inside the applications, neither collaboration dynamics
related to the physical layout of the interfaces.

Julià and Gallardo’s TDesktop (Julià and Gallardo, 2007) was a first unpublished at-
tempt from this author of this thesis to create a tabletop operating system. It provided
facilities for third-party tabletop applications to be developed, as well as an environment
to run and manage multiple applications at the same time. Applications were multi-user
by default, and they could ask the system for full-screen execution, when not designed
as floating widgets. However, it did not enforce that input events were distributed to

124

5.4 Approaches to Multi-Tasking

one application at most, leaving the possibility to multiple interpretations.
In the next section we will study and try to overcome some of the technical and concep-
tual difficulties for designing a proper multi-tasking system on a shareable interface.

5.4 Approaches to Multi-Tasking

From an implementation point of view, interaction in multi-tasking can be narrowed
down to two different problems: (i) allowing two or more processes to share the input
and (ii) allowing two or more processes to share the output. In the PC, input would
consist of mouse and keyboard events, whereas the output would take place in the
monitor display (and in the speakers). In a tabletop system, the output would also be
the visual and audible display, whereas the input would be provoked by the objects and
the finger touches on its surface.
Although sharing input and sharing output may be superficially seen as two aspects of
the same problem, they are fundamentally different. Sharing output is a relatively simple
issue because it can be reduced to a mixing mechanism: many programs may require to
output some data to a specific destination (the screen), and the task of such a system
would simply consist on deciding how to (or rather whether to) mix these data. As the
source and destination of the output events is known, the system can use simple rules
to decide, for instance, if an app can draw into the display, occluding other programs,
or if the sound that it is generating will be mixed with the sounds coming from other
programs, and with which volume.
On the other hand, sharing input is a much more complicated de-mixing problem: data
from one source (such as the data coming from the touch sensor on a multi-touch display)
can potentially relate to several recipients, the programs. The task of the system on this
case is more complex: the system must know the destination of every data element,
that can be shared or not. On a PC, a media play keystroke, for instance, has to be
distributed to the correct program that is waiting for these types of events, and not
always necessarily to the “active” program, the one that is considered to be actually
used by the user, with a privileged situation that makes it the default receiver of all
input data.

5.4.1 Input sharing

As we envisage a system that allows for applications designed by third party developers,
we must assume that applications developed by different people can be run and used at

125

5 Multi-Application systems: GestureAgents

the same time. This poses a problem to the traditional methods of disambiguation used
inside the applications (see Section 5.5) as there may be ambiguity between gestures from
different applications, which cannot be known at coding time. Even if each application
uses an orthogonal gestures approach, the combination of the two gesture spaces from
two applications can result into ambiguity.

As many programs can be potential receivers of this data, the system needs a set of
rules and mechanisms to fully determine the correct recipient of every piece of input
data. These rules will determine the way multi-tasking is presented to the user.

Several rules exist, for dealing with this uncertainty. Many of them will take into account
the context. In interfaces where input and output happen at the same place (i.e. with
Full or Nearby embodiment, according to Fishkin taxonomy (Fishkin, 2004)), such as in
a touchscreen, input events can be tied to the output elements nearby. A touch can be
tied to the visual element just underneath it, created by a particular program that will
become its correct recipient.

Interfaces in which input and output are decoupled (Sharlin et al., 2004) may impose
more difficulties. When input information is completely untied to the output elements
of the processes, strategies other than using a simple distance criterion have to be used.
In the case of a mouse device, for instance, the PC strategy is to create a virtual pointer
that is controlled by it: as this pointer is coupled to the display, it can be treated as
in the previous case (coupled). The mouse mediates between the user and the cursor;
it is not a generic input device which is part of the interface, but a specific physical
representation of the cursor.

The PC keyboard is another decoupled interface, and keyboard events can have several
destinations, these being different programs or even different widgets inside a program.
Some windowing systems simply send the keyboard events to the program under the
pointer, while others create a default destination for the keystrokes (Scheifler and Gettys,
1990). . This destination is controlled by the input keyboard focus, so that only one
widget (from one application- the active one) is the current receiver of all keyboard
activity, and this destination can be changed using the pointer (interacting with another
window/widget) or special key combinations (such as Alt-Tab in the PC) (see Section
2.2.4). The assumption of a single input keyboard focus by the PC interaction makes it
difficult to adapt it into a multi-user setting, as the interaction would require multiple
foci. Some approaches have been taken in this direction, such as the Multi Pointer X
(MPX) (Hutterer and Thomas, 2007) extension, which allows having virtual input pairs
of visual pointers and keyboards that can operate at the same time both with adapted

126

5.4 Approaches to Multi-Tasking

and with legacy X11 applications. It struggles with applications that assume that there
is only one pointer and focus, enforcing single-user interaction with those applications
as a partial solution. By pairing cursors and keyboards in pairs, MPX allows several
foci (one per pair) to simultaneously exist (Hutterer and Thomas, 2008).
The approach to follow on shareable interfaces will depend on the type of interface and
its purpose. Coupled input/output interfaces, such as tabletops or vertical displays have
the possibility of tying input events to output entities. Gestural body interfaces may
have to use other approaches, such as using a mediating virtual representation of the
body (equivalent to the cursor) as the seminal work of Myron Krueger in Videoplace
or Videodesk (Krueger et al., 1985) already suggested, or some other kind of focus
mechanism.
Input sharing in tabletops is still a young question, as it seems that the problem of
multi-tasking has still not arisen. Window-based application management is starting to
be present on tables (Tuddenham et al., 2009; AlAgha et al., 2010; Mackenzie et al.,
2012; Gaggi and Regazzo, 2013), but the preferred option continues to be full screen
locking (Ackad et al., 2010).
In the next sections we will present the different approaches to an input sharing strategy
between simultaneous programs: area-based, arbitrary shape area-based, and content/semantic-
based.

5.4.2 Area-based interaction

In coupled interfaces it is common to find window-based multi-tasking, so that different
programs obtain independent rectangular areas. They can draw and get all the interac-
tion performed inside. Those areas can usually be transformed and manipulated by the
user, making it possible for multiple processes to be present in the display at the same
time, thus promoting multi-tasking. In these cases, all the programs inputs and outputs
are confined inside their respective (or multiple) windows, and a simple coordinate test
helps input events to be assigned to the correct program.
Rectangular windows particularly fit the PC setting. They have the same shape as the
screen and, as they cannot be rotated, they can occupy the full screen if necessary,
occluding other windows (rotation of windows is not desirable, as the display is vertical
and has a well-defined orientation, similarly to what would happen to a painting in a
wall).
Using windows on other non-PC situations can have some caveats. In non-rectangular
interfaces, such as in round tabletops like the Reactable (Jordà, 2008), the rectangular

127

5 Multi-Application systems: GestureAgents

Rectangular window

Circular widget

Empty, occluding space

Occluded application

Figure 5.1: A window with empty space occluding the interaction for another

shape seems to perform poorly. The Reactable’s circular surface was designed to avoid
dominant positions (Vernier et al., 2002; Jordà et al., 2005). While, perhaps for this
same reason, the original Reactable avoided the use of windows or rectangular areas,
its more recent commercial incarnations make use of them, and allows users to reorient
them 1, suggesting that when no predefined orientation exists, the potential rotation
of windows seems necessary. Even within rectangular tabletops, at least two (or even
four) predominant points of view could exist, making the rotation of windows a desired
feature.

On top of these orientation issues, forcing a fixed shape for all applications may not
always be a convenient solution: some programs may need less restricted areas, leaving
most of its window space empty (for instance a circular program, such as a clock, would
have considerable empty space at the edges of the window). This empty space would
prevent input events to reach other occluded applications, making them unreachable(see
Figure 5.1).

5.4.3 Arbitrary Shape Area-Based Interaction

An alternative to window-based interaction is area-based interaction. In this case, in-
stead of windows, the system will have to maintain a list of active arbitrary-shape areas
of the processes. The input events distribution mechanism should be equivalent as when
using windows: a collision test will find the correct program that holds the target area
for one particular event. By using arbitrary shapes instead of rectangular windows,
processes no longer have the problem of empty occlusion, as all the unused application
space does not have to be covered by an area. Using arbitrary-shape areas is already a
popular approach when distributing events through different objects inside an applica-
tion. Inside a program window, the different presented elements define areas where the

1https://www.youtube.com/watch?v=kYyg-wVYvbo

128

https://www.youtube.com/watch?v=kYyg-wVYvbo

5.4 Approaches to Multi-Tasking

forwarded input event can be assigned to. Buttons, sliders and many kinds of controls
are examples of this strategy.

However, this approach is not perfect. Apart from the case of decoupled interfaces,
where area-based interaction is not possible, this strategy may not be desirable in other
additional situations, at least as the only discriminating mechanism.

Recent history of interaction in touch-enabled devices has shown that there is room for
improvement beyond the simple gesture primitives that were associated with pointing
devices, and a variety of touch-based gestures have been developed and even patented
since the first portable multi-touch devices appeared (e.g. pinch zoom, swipe, swipe
from outside of the screen, etc)(Hotelling et al., 2004; Elias et al., 2007).

The fact that portable devices tend to have full-screen applications, which can therefore
trivially manage all the multi-touch input, has boosted the development of complemen-
tary and often idiosyncratic gestures, able to handle more complex and richer interaction.
If areas were used to know the destination of every input event, the gestures of every
application should start, continue and end inside of the process’ areas, rendering many
gestures that used to temporarily transit outside the target area, impossible to recognize.
Even a strategy where only the starting event is used to check the colliding area may have
problems with gestures starting outside of it. Let’s imagine and study some examples of
gestures that would be problematic when using areas. An application is responsible for
displaying notes through the surface of a tabletop. Those notes can be translated and
transformed by standard direct manipulation gestures such as pinch zoom or dragging.
Imagine that the programmer wants to implement a gesture to save this note: circling
the note.

Note that for circling a widget with one finger, we do not need to enter in contact with
the widget itself (see Figure 5.2). If the area of the widget is defined by the surface of
the note, the needed input events will never reach its right destination. Having a larger
gesture area covering the places where gestures are likely to occur, may help to receive
such events, but at the cost of occluding the interaction with other event recipients, such
as other potential applications underneath this note’s area.

In this other example, let’s imagine a gesture (e.g. a cross) that instantiates a new widget
(e.g. a new note in our note-taking application), anywhere on the interactive surface.
As there is no predefined existing area listening for events, the note-taking application
cannot know when and where to invoke a new note, and, if the whole-surface area was
used for catching all potential crosses, other applications would be occluded and being
unable to receive any input event. Although this particular example could be solved

129

5 Multi-Application systems: GestureAgents

App1

App2

Figure 5.2: A note-taking application that allows the user to create new notes, by draw-
ing circles with a finger over a map browsing application that can be dragged
with the finger. Notice that in the case of using area-based interaction, the
note taking program will not receive circling events.

by showing a button widget to create new notes, it would have to always be visible,
cluttering the space. Global system gestures could be another example of gestures made
outside areas; a gesture defined by the system to show a global menu, such as a wave
gesture, can be performed anywhere on the surface, regardless of whatever is underneath.

Julià and Gallardo’s TDesktop (Julià and Gallardo, 2007) tabletop operating system
solved this problem by allowing the several applications that could run simultaneously to
receive the raw stream of input events as an addition from its standard area-based input
event filtering, thus receiving also input data that originated elsewhere of their areas.
This solution, although effective, rises the problem of how to distribute events through
applications, so to avoid the problem of having several subscriber programs receiving the
same events, and each of them simultaneously assuming being the intended addressee of
the interaction.

Finally, the area-based strategy to multi-task interaction is not possible with decoupled
interfaces such as full-body sensors and camera-based interfaces (e.g. Kinect), motion
sensors (e.g. Wii remote), voice and sound interfaces (e.g. Speech recognition); these
could still benefit from multi-tasking abilities as they are already used in multi-user
contexts. If multi-tasking with decoupled interfaces may still seem like a fringe problem,
an example can quickly reveal its need. When multiple home appliances in the same

130

5.4 Approaches to Multi-Tasking

room, such as a hi-fi sound system and an air conditioner, can accept body gestures as
commands, they are in fact sharing the same input interface (the body). Some mecha-
nism has to ensure that the same body movement cannot be interpreted as commands
for both appliances simultaneously.
In short, shareable interfaces (as we have seen in the example of TDesktop) trying to
process area-less gestures, but also decoupled interfaces, would benefit from a mecha-
nism different than using areas or windows, for distributing input data to its correct
destination, and thus preventing various programs to process the same events.

5.4.4 Content/Semantics -based input sharing

For decoupled systems that cannot use window(or area)-based input sharing, as well as
for coupled interfaces that for some reason would opt for not using it, an alternative can
be using content-based input sharing.
In a content-based input sharing mechanism, the algorithm, instead of distributing the
input events to their destinations based on the position of the event, would try to know
which events are expected by every application, and would then distribute these events by
deducing their right destinations. This approach would not necessarily treat input data
as separated events, but rather as streams of events that may convey meaning within
them. The destination of an input event, for instance, may not only depend on its
own information, but also on the gesture it is part of, on the types and characteristics
of the possible recipients, on the context, etc. Generally speaking, when a series of
input events that have a global meaning/semantics as a gesture is defined, the system’s
function is to successfully recognize the performed gesture and subsequently distribute
it into the processes, given their current expectations and their contexts. A very simple
example implementing this idea could be a system which has the code to recognize a
set of gestures from the input, and when it fully recognizes a gesture, this is distributed
to the application that has requested it. In the possible case that applications A and
B request respectively the stick and pinch gestures, when the system recognizes a stick
gesture it handles it to A. Instead, when a pinch gesture is recognized this one is sent
to B.
Some existing systems already use this last kind of approach. There are special cases in
mobile device systems where two applications can share the same interaction space (if we
consider the operating system to be an application). For instance, in the Apple’s iPad2

there are some system gestures that can be recognized even when running applications.
2https://www.apple.com/ipad/

131

https://www.apple.com/ipad/

5 Multi-Application systems: GestureAgents

In these cases the disambiguation technique used could be described as disambiguation
by cascade: first the system tries to recognize its gestures, and then the application
recognizes its own. This approach, however, is only valid between apps when we can set
priorities between applications (focus), something that is justifiable for global system
gestures, but not between different applications as the notion of multi-user multi-task
denies interaction focus.

An issue arises when implementing a system that uses content-based input sharing: does
the system incorporate all the code needed to recognize all the defined gestures? Should
the full set of gestures be defined within the system or should they be defined within the
addressees programs themselves? Depending on how we choose to distribute the role of
defining and recognizing these gestures, three different strategies can be employed:

• A centralized gesture recognition engine, with a fixed set of gestures.

• A centralized gesture recognition engine, with an application-defined set of gestures.

• A decentralized application-centered gesture recognition, with a coordination proto-
col.

A centralized gesture recognition engine, with a fixed set of gestures

As in our stick and pinch gestures example, the system could define a fixed set of
gestures the applications could register to. Based on the preferences of the applications
at the time a gesture is recognized, the system just notifies the correct program when
an individual gesture is recognized. Unfortunately, this strategy has a clear drawback,
since it prevents programs to define their own gestures, the ones that the application
programmer(s) felt were best suited. Rich interaction, understood as the possibility for
individual applications to define their own optimal gestures independently of the existing
system gestures, is thus dangerously limited.

A centralized gesture recognition engine, with an application-defined set of
gestures

In this type of systems, common recognizing mechanism needs to be implemented, for
which the application programmers will define their own respective recognizable gestures.
Many recent advances have been attained in the direction of language-based gesture
definitions, especially in the context of multi-touch applications, which in our case could
allow arbitrary gesture definitions to be added to the system at runtime:

132

5.4 Approaches to Multi-Tasking

Proton (Kin et al., 2012), Midas (Scholliers et al., 2011), GeForMT (Kammer et al.,
2010b) and GISpL (Echtler and Butz, 2012) all allow the programmer to describe gestures
in specially crafted languages that simplify the programming of gesture recognizers, and
therefore the code dedicated to detect gestures from the input event streams. From
those, Midas, GeForMT and GISpL are interpreted (GISpL only partially) and could
theoretically be used as the basis for more general systems, on wich the applications
carry their own gesture definitions and transfer such specifications to the system, which
would use them to recognize the gestures.

The choice of the gesture definition language is also a non-trivial issue. Such a language
should ideally be as complete as possible in order not to become an obstacle for the
programmers, thus making some gestures impossible to define. For instance, for allowing
gestures to be related to the application context data, such as virtual objects inside the
application, the definition language should provide ways to access it. Proton, GeForMT
and GISpL explicitly integrate areas (as parameters to be accessed in the language
or as a previous filtering) as part of their languages, easing area-based gestures to be
programmed, but making area-less gestures difficult to describe, as this is a fundamental
part of these languages. Midas allows instead for a sort of generic user-defined code
and object access from inside the gesture definition, thus enabling not only areas, but
also other types of constrains to be used, showing its potential to be useful in many
gesture recognition styles. However, it is unclear how such relationship would work
when applied on a server-client schema, which would need to interpret the definitions
within the system while the needed code and data resides on the program. Apart from
these language issues, a gesture recognizer system should also meet some additional
requirements. None of the aforementioned languages allow multiple instances of gestures
being performed at the same time, treating instead all the input events as part of the
same gesture, thus making them unsuitable for multi-user contexts.

Although a variation of the previous projects would probably fit the requirements for
building this type of system, forcing all the programs to describe their gestures in a
common language would also have the side effect of preventing other kinds of gesture-
recognition approaches from being used. For instance, machine learning based ap-
proaches (such as (Wobbrock et al., 2007) or (Caramiaux and Tanaka, 2013)) would
not be possible, since within this strategy, gestures are not formally described, but
learned instead from examples.

133

5 Multi-Application systems: GestureAgents

A decentralized application-centered gesture recognition, with a coordination
protocol

With this third strategy, the system does not participate directly on the recognition of
the gestures, but helps instead in coordinating the set of programs interested in these
gestures. The recognition process takes therefore place inside the applications, allowing
nearly total freedom to the programmer, while a common protocol between the system
and the programs is used to guarantee that no single event is mistakenly delivered to
two different processes.
By running the gesture recognition inside the application, it can take into account its
context (e.g. position of the application elements, and other internal logic) without
having to rely on a good gesture language definition, as in the previous case. This ap-
proach also allows programmers to code the recognizers using their favorite techniques
or frameworks, instead of having to rely on the system’s choice of language or libraries.
Furthermore, as the system is in charge of preventing double interpretations of gestures
across different applications, the different recognizing mechanisms will not need to pro-
vide multi-tasking facilities. The aforementioned gesture description languages could be
easily adapted to support the coordination protocol with the system, and they could
be deployed inside the application. Other programs could for example use a machine
learning approach, provided that they respect the protocol, and thus train their gesture
recognizers with examples.
The framework we are presenting, GestureAgents (Julià et al., 2013),tries to create this
common protocol and infrastructure. In GestureAgents, instead of relying on the use of
a particular declarative language, the recognizing mechanism is conditioned by a series
of coordination messages that the system and the processes need to exchange.
Our approach simply requires developers to code their recognizers in a way that allows
the system to have information about the context and the input events involved in
the gestures being recognized. The system decides, during the interaction, whether a
recognizer can or cannot identify each input event as part of a gesture. It basically
defines a set of sensible rules that all recognizers must meet, but it does not force a
particular coding style or technique.
In particular, GestureAgents was created with these features in mind:

• Device-agnostic: e.g. it does not matter if we are using multi-touch interfaces or
depth-perceptive cameras.

• Not enforcing a specific programming technique or library for gesture recognizing.
• Allowing concurrent gestures.

134

5.5 Approaches for Multi-Gesture Applications

• Allowing both discrete and continuous gestures.

• Allowing multiple applications to share sensors and interfaces without the need of
sub-surfaces or windows.

• Freeing the developer from knowing the details of any other gesture that can occur
at the same time and device.

• Trying to take into account real time interaction needs.

5.5 Approaches for Multi-Gesture Applications

The presented strategy for enabling cross-application gesture disambiguation can also
be useful inside a single program. Every application can have many possible gestures
to recognize and many possible targets for these gestures, and their recognizers could
be interacting with each other as if they were from different applications in order to
coordinate their disambiguation.

In fact, GestureAgents started with this very purpose, enabling applications to use
multiple simultaneous gestures in a safe way, relating to the problems identified in
ofxTableGestures, described in Section Simplifying the API (2012), where several ges-
ture recognizers would consume the same input event, resulting in multiple simultaneous
interpretations of the user behavior.

We approach the existing approaches to provide disambiguation inside a single applica-
tion and their relevant properties in the next sections.

5.5.1 Gesture recognition and disambiguation in a single application

An interface or application that allows complex gesture interaction must decide the
meaning of every single input event. When it finds that one same sequence of input
events has several gesture candidates, it has to disambiguate them.

This process can be eluded by avoiding ambiguous situations altogether, for instance by
designing the application to have orthogonal gestures and inputs, which would imply that
different gestures do not share interaction spaces or sources. TurTan (Gallardo et al.,
2008) is an example of a tangible tabletop that uses pucks and touches for its interaction,
separating object-related gestures and touch-related gestures into two totally unrelated
sets of gestures.

Another factor used to limit the possible gesture ambiguities is context. For instance,
a given application can accept one type of gesture at one state and another in another

135

5 Multi-Application systems: GestureAgents

state. The same can happen amongst areas of interaction: if a button is only tappable
and a canvas is only drawable, the application can use spatial information to rule out
gestures. In this case we can think of multiplexing the interaction by time or space
(Fitzmaurice et al., 1995).

Finally, more complex multi-gesture (multi-modal) interactions can be considered that
do not use the limiting strategies defined above. There are many ways to handle the
disambiguation process. Typical approaches are machine learning techniques (Schlömer
et al., 2008; Wobbrock et al., 2007) or custom analytic disambiguation code, coded ad-
hoc or generated by a static analysis of the possible gestures (Kin et al., 2012). Note
here that, to be able to use these techniques, the programmers must know at coding
time all of the possible gestures that can happen at run-time.

Event-driven gesture recognition frameworks

Many frameworks created to support touch-enabled applications in tabletops use the
most low level approach to deal with gesture recognition, event-driven programming.
With it, the code created to recognize a gesture will process the different input events
directly as they arrive.

Dealing with events is considered difficult (Hoste and Signer, 2014), as the program
flow is defined by the events instead of the program and it poses a challenge to deduce
the current context in witch events are generated, as the meaning of two events of the
same type can vary greatly with the internal state of the gesture or the application. For
instance, a finger move event can mean different things for a tap recognizer, depending
on whether it is from the finger it is tracking or not.

This difficulty was greatly experienced by the TSI students when programming their
gestures recognizers, even when assisted to first create a state machine on paper to
understand all the possible interactions with events, as explained in Section Multi-user
gestures (2011).

Microsoft Surface SDK (now PixelSense SDK)3 is the canonical way to create apps
with gesture capabilities for the PixelSense tabletop (see Section Existing tabletop ap-
plications). It is based on Windows Presentation Foundation (WPF) and many other
Microsoft Windows technologies. It gives access to raw events and provides a family of
WPF multi-touch controls.

Multitouch for Java (Mt4j) (Laufs et al., 2010) provides a cross-platform framework to
3http://msdn.microsoft.com/en-US/windows/desktop/hh241326.aspx

136

http://msdn.microsoft.com/en-US/windows/desktop/hh241326.aspx

5.5 Approaches for Multi-Gesture Applications

access to the input events from several sources based on Java. A set of custom widgets
is also provided.

Grafiti (De Nardi, 2008) is a library written in C# that focuses on gestures centered to
tangible objects on the interactive surface.

PyMT (Hansen et al., 2009) is a framework for Python applications that provides both
raw data access and specific functions for recognition. It provides with a library of
custom widgets.

Kivy (Virbel et al., 2011) provides a multiplatform framework designed to create multi-
touch applications for a variety of computing platforms. Coded in Python, it provides
a strong and guided separation between the presentation and underlying program logic.
Many custom widgets and gestures are provided, supporting multi-trace gesture recog-
nition only experimentally.

GestureAgents follows this strategy in its part of gesture recognition. Although other
approaches, such as the ones to be presented next, tend to be easer to use, the many
limitations they have and that will be exposed, made us believe that this was the best
option.

Machine Learning Techniques

Machine learning techniques are very present in gesture recognition across various in-
terfaces. In general, many problems related to extracting the underlying model from
the sensor data, can be a good candidates to being solved using machine learning. In
particular, extracting useful data from images to reconstruct the body position and
parts, is a typical field of application, from face tracking to human pose reconstruction
(Popescu-Belis et al., 2008; Shotton et al., 2013).

Even with its usefulness, creating machine learning systems to solve these kind of prob-
lems is a complex task and requires an expert knowledge on the used methods to not fall
in its various typical pitfalls (Domingos, 2012), being problematic to non-expert users.

Machine learning can also be used to classify gestures from provided examples. A very
generic system is provided by The Wekinator (Fiebrink, 2011), allowing the user to
configure many types of machine learning algorithms to recognize any type of data,
often coming from camera or sensors. The resulted classification or output parameters
are then sent to the application.

Recognizing gestures from sensor data is indeed a popular field for machine learning
techniques, because of the difficulty of reconstruction of the original 3D movement. As

137

5 Multi-Application systems: GestureAgents

Figure 5.3: Two circling-a-target gestures, one with a still target and another with a
moving target. Notice the difference between the resulting trajectories.

an example, Schlömer et al. (2008) use this approach to classify gestures using a hand-
held Nintendo Wii controller.

More specialized systems being used in tabletops include the classic 1$ recognizer (Wob-
brock et al., 2007), that can be trained with a single example of every gesture, and
performs an angle and scale-invariant match of the whole finished gesture.

A more complex system that also uses a one-example philosophy, but provides real-time
recognition, is the Gesture Variation Follower (Caramiaux and Tanaka, 2013). It not only
classifies the gesture, but also identifies the position inside it, allowing its progression to
be tracked.

A very common problem of these approaches is the lack of context: the algorithm only
takes into account the input data and not the relevant state information from the appli-
cation. This means that a gesture which trajectory depends on external components of
the interaction, as an application defined target, will not be necessarily well recognized
afterwards. Take for instance a gesture circling a target. The trajectories of two of these
gestures, one for a still target and another for a moving one, will be completely different,
and the algorithm may have some trouble identifying them (see Picture 5.3). Even if
context data is feed to the algorithm, it is impossible to know if irrelevant data will be
learned to be used to recognize unrelated gestures, as the results of those algorithms are
often treated as a black box (Hoste and Signer, 2014).

Another very important problem that usually face those approaches is the one of lacking
multi-gesture support; the applications have to make a decision a priori of whether all
of the input data belongs to a single gesture or not. In 1$ recognizer users, for instance,
it is very typical to assume that every trace belongs to solely a gesture, thus making
multi-trace gestures impossible.

138

5.5 Approaches for Multi-Gesture Applications

Domain specific languages

Another approach for gesture recognizing, trying to ease the coding of recognizers, is the
definition of a domain specific language specifically designed to describe gestures. Those
definitions can then be translated to recognizers compilable code, or be interpreted later
by a central engine.

GeForMT (Kammer et al., 2010b) defines a grammar with atomic operations (POINT,
SEMICIRCLE, ...), that will be interpreted by a centralized engine, to check if the input
events meet the definitions.

GDL (Khandkar and Maurer, 2010) presents another grammar that allows the program-
mer to list a series of preconditions to verify on the input events, in order to recognize a
gesture. Sequential traces can be used in a single gesture by saving partial results with
an alias for later use.

Midas (Scholliers et al., 2011) provides an extensive language used to define rules that
represent gestures. Those rules have prerequisites that if evaluated to true, execute the
consequences. Midas provides a more low-level approach to gesture description by not
focusing the language to the physical description, but to the programmatic requirements
and actions to be performed in a functional style. It also allows a generic mechanism
to use the application context inside the gesture definition, not explicitly limiting it to
areas or targets.

Proton (Kin et al., 2012) takes a more formal approach by describing gestures as regular
expressions to be matched on input data. By doing this, it allows a static analysis to
discard conflicting gestures. It also provides a graphical editor for the language intended
to leverage the creation of new gestures by novices.

GISpL (Echtler and Butz, 2012) (formerly GDL (Echtler et al., 2010)) focuses its work
to provide a device-generic way of describing gestures, by defining gestures as a series of
recognized features. By separating the description of the actual movement, in features,
from the meaning-bearing gesture, it is easier to create gestures that are independent of
the actual input device, also allowing a sort of code reuse.

As discussed earlier in Section 5.4.4, the lack of generic operations (due to the restricted
language) and access to the application context are important limitations that we have
to take into account, as they potentially limit the expressivity of the created gestures.

But, undoubtedly, the biggest limitation of the aforementioned languages is that none
of them allow multiple instances of gestures being performed at the same time, treating
instead all the input events as part of the same gesture, thus making them unsuitable

139

5 Multi-Application systems: GestureAgents

for multi-user contexts. Only limited support for concurrent gestures is provided using
area filtering.

5.5.2 Gesture Composition

Gesture Composition is the ability to describe a gesture in terms of a combination of
previously defined simpler ones. For instance, a double tap can be described in terms of
tap (a double tap is the sequence of two taps close in time and space) instead of primitive
finger ones.

Gesture composition allows programmers to better reuse and test the code, lowering the
gesture recognizers verbosity and simplifying the code overall.

Many of the presented domain specific languages (such as Proton) define gestures as
a combination of more or less primitive touch event types. Although this could be
considered gesture composition, it does not allow using custom gesture types as building
blocks.

Midas framework allows to develop complex gestures by combining multiple basic ones.
This is achieved by asserting gesture-specific facts on gesture detection. GISpL intro-
duces features, conditions to be met to match a gesture, which can be defined as a
combination of other, possibly custom, features.

In GestureAgents the composition mechanism is provided by considering recognition as a
multi-layer process: every gesture recognizer is also an event generator (agent) that can
be used by other recognizers: there is no explicit concept of “sub-gesture”, in the sense
that all recognizers are programmed the same way. The disambiguation process ensures
that no overlapping gestures are recognized (the implementation is better described in
Section 5.7.1).

5.5.3 Single-Gesture Certainty and Real Time Disambiguation Strategies

When faced with ambiguous gestures we can find that different frameworks differ on
how they handle them. Some choose which gesture will “win” based on a probabilistic
approach where each possible gesture is assigned a probability in a given situation, here
the system will favor the most likely one. This probability could be computed using
positional information of the input related to possible targets as well as completeness of
the gesture (Schwarz and Hudson, 2010; Caramiaux et al., 2010).

Other frameworks rely on a list of priorities that the developer can define, gestures of
low priority are “blocked” until gestures considered more important have already failed,

140

5.5 Approaches for Multi-Gesture Applications

this logic is present in Midas (Scholliers et al., 2011), Mt4j (Laufs et al., 2010), Grafiti
(De Nardi, 2008) and in Proton (Kin et al., 2012) frameworks.

Some frameworks will attempt to take a decision as soon as possible to reduce lag, while
others will prioritize certainty and will not resolve the conflict until there is merely one
possible alternative left (Scholliers et al., 2011).

The choice between reducing lag (and prioritizing Real-Time) and maximizing certainty
has deep implications. While the first allows instantaneous feedback to the user, regard-
less of the conflicting gestures, if new events favor a different gesture from the one being
currently assign, the interpretation of the actions of the users can change abruptly. If
the erroneously assigned gesture has made any actions on the program, a rollback mech-
anism can be necessary to maintain the integrity of the application. Independently of
the unexpected consequences these actions may have, the overall process may confuse
and deter users to confidently engaging with the system.

On the other hand, prioritizing certainty can mean delaying all consequences of a per-
formed action while there is uncertainty. Although this is the safest strategy, actions
requiring real-time feedback for the user may be impossible because of the delay of the
gestures consequences.

This is intimately related to the two different types of gestures that exist when we
consider the the Real-Time dimension of interaction: discrete (or symbolic) gestures and
continuous gestures (also known as online and offline gestures (Kammer et al., 2010a;
Scholliers et al., 2011)). Discrete gestures are gestures that do not trigger any reaction
until they are finished (Kammer et al., 2010a). A typical example could be a hand
writing recognition system where the user must finish the stroke before it is recognized.
On the other hand, continuous gestures may trigger reactions while the gesture is still
performed. For instance, a pinch gesture can be applied constantly to a map while it is
performed. This distinction is important not only at its implementation level, but also
in a conceptual one: discrete gestures do not acquire meaning (and do not change the
system state or trigger any kind of reaction) until they are completed. For instance, in a
CLI (where only discrete gestures exist) nothing happens until the Enter key is pressed.

On the other hand, continuous gestures do already convey meaning before they are
completed. This means that at some point, part of their meaning is defined (typically
the Type of the Gesture) while other parameters can still change, ideally in real time.
In such a case we can call these parameters Controls.

GestureAgents uses the certainty maximization approach, by not allowing gesture events
to reach the application until there is only one valid explanation. It however tries to

141

5 Multi-Application systems: GestureAgents

Agent

Gesture (event)

Recognizer

Input events

Application
handling
code

gestures are composed by agent's events

(Gesture model)

(in the system)

Figure 5.4: Conceptual elements of GestureAgents.

reduce the disambiguation lag by requesting the recognizers to make a decision as fast as
possible (see Section 5.6.3) or by creating specific policies allowing latent gestures (see
Section 5.6.4). This way it tries to support both discrete and continuous gestures.

5.6 Implementation of GestureAgents Framework

In this section, we describe how the GestureAgents framework implements the proposed
protocol strategy to manage input events to be consumed by recognizers implemented
in several applications. We first introduce the basic elements, then the protocol between
the applications and the system, the restrictions of the gesture recognizers’ behavior,
and give details about the functioning of the system and the particular implementation
of GestureAgents.

5.6.1 Elements of GestureAgents

GestureAgents is a framework that aims to provide a generic and flexible solution for
multi-user interaction in shareable interfaces, both inside a single application as in a
multi-tasking system. As schematized in Figure 5.4, GestureAgents relies upon the
concepts of “agent”, “gestures” and “gesture recognizers” and on the idea of “agent
exclusivity”.

An agent is the source component of part of the interface input events, such as an
object in contact with a tangible tabletop interface or a finger touching the surface on
a touch-based interface. For example, in the case of a multi-touch interface, an agent
would be created for every sequence of touches, considering that a sequence starts with
the detection of a finger hitting the surface and concludes when the finger is removed
from the surface. By default, agents will represent the minimal set of identifiable event
types (such as the finger touch already described), while more high level agents, those

142

5.6 Implementation of GestureAgents Framework

A2
A1

G1 G2 G3

t
Figure 5.5: In this example the events, emitted by two agents (A1,A2) and represented

by circles, are part of three different gestures (G1,G2,G3) that can occur
simultaneously, as in the case of G2 and G3.

composed by other agents, such as a hand agent composed by finger ones, can be also
provided, which are best suited for full body interfaces, where the interaction can have
different “resolutions”.
Gestures are sequences of agents’ events, which convey meaning expressed by the user
and defined by the program. A gesture can relate to a single agent or to multiple ones,
both simultaneously and distributed in time. Gestures can be discrete (or symbolic), in
which case they will not trigger any reaction until they are finished; or continuous, in
which case already convey meaning before they are completed, and can therefore trigger
reactions before finished(Kammer et al., 2010a).
A gesture recognizer, a piece of code that checks that the pattern that defines the gesture
corresponds to the received events, is used by the program to identify a gesture coming
from the agents’ events. By using agents as the basis for its gestures, recognizers do not
have to receive all the events from the interface, but only the agents they are interested
in. This allows the recognition of multiple gestures at the same time (see Figure 5.5),
as opposed to the majority of gesture frameworks, where all the input events are part of
the same gesture.
The fundamental idea in GestureAgents is based upon agent exclusivity. An agent, at
one given time, can only be part of one gesture(see Figure 5.6). The system presents the
input data, in the form of agents, to the gesture recognizers inside the applications, and,
if they want to use them as a part of their associated gestures, they will have to compete
between them to earn the exclusivity over the agent’s use before recognizing their gesture.
By locking different agents, several recognizers can simultaneously recognize gestures,
preventing double interpretation of the same input events, and allowing multi-tasking
and multi-user gesture interaction.
Following we describe a concrete example. One mouse button press (one input event) can

143

5 Multi-Application systems: GestureAgents

Event:
Finger On Table

Tap

Double-Tap

Move

Gesture Recognizer

Agent Finger

Figure 5.6: Agent exclusivity enforces that an agent at a given time can only be part of
one single gesture.

only carry (or be part of) one meaning (Gesture = Agent→meaning). It can not mean
both a click and a double-click. Things have been this way most of the time in existing
systems like the WIMP, where the concept of Focus forces every input event to have an
obvious target that identifies its meaning/gesture. For instance, Agents that have no
spatial context, like keystrokes, have a target widget defined by a focus point so a single
keystroke always goes to a single target. This restriction seems also reasonable, as it is
difficult to imagine attaching more than one gesture/meaning to one atomic operation
in a given system. This is, however, a limitation. Systems that are not deterministic
or that for artistic purposes want to mix incompatible gesture sets without defining the
priorities or policies required by this restriction, must be built in a different way and
cannot benefit from this framework.
As GestureAgents does not use a special gestural description language, problems con-
cerning the limits of this framework in terms of completeness or design assumptions do
not apply. Definition of gestures is done solely on the applications. Areas, if present, are
also implemented at the application level, and tested by the applications’ own gesture
recognizers, using their own settings. It is thus up to the programmer to use any existing
library to recognize gestures or to code a recognizer from scratch.

5.6.2 GestureAgents Protocol

The coordination protocol is defined by communication between recognizers (inside ap-
plications) and agents (in the system), relating to the process of soliciting agents, getting
their exclusivity and releasing them.
The communication regarding the recognition of gestures, happens between recognizers
(inside the applications) and the system (holding the agents), as shown in Figure 5.7.
The GestureAgents’ protocol defines various types of relationships between recognizers

144

5.6 Implementation of GestureAgents Framework

Initial State Evaluation

Finished/Failed

Recognition

Acquire Agent

Acquire
Agent

Confirm Agents

Fail Finish

Figure 5.7: States of a recognizer

and agents, depending on their internal state. Specifically, a recognizer is considered to
follow a process of four distinct steps:

• Initial state

The recognizer is waiting for an agent (of one specific type) to be announced by
the system. While in this situation, the recognizer can be considered dormant (it
is not related to any active agent or gesture).

• Evaluation state

The recognizer, which has communicated to the system an interest on one or several
agents, is evaluating a if their events match a possible gesture, which may or may
not be recognized at the end. In this state, the confidence of the recognizer for
the hypothesized gesture is not high enough for considering it to be correct or
incorrect.

Depending on the type of gesture being evaluated, this state can be more or less
extended in time. Discrete (or symbolic) gestures will be processed mostly in
this state, because their correctness is not fully set until the end of the gesture
(Kammer et al., 2010a). Continuous gestures, however, can be recognized way
before the gesture has ended. In this former case, this state will last as long as the
type of the gesture is not confirmed.

• Recognition state

In this phase the recognizer is confident that the tracked events of the agents match
its associated gesture pattern. The transition to this state occurs after two subse-
quent factors: (i) the recognizer no longer considers the gesture a hypothesis (and

145

5 Multi-Application systems: GestureAgents

so it abandons its evaluation state), and (ii) the system grants the recognizer the
exclusivity on the requested agents. In this state the recognizer simply processes
the agents’ events to extract control events from the gesture, until the recognizer
considers it to have ended.

• Failed/finished state

In this state the recognizer is no longer active; this can be due to the nonrecognition
of the gesture, or to the successful conclusion of the recognized gesture.

With this behavior in mind, the protocol is composed of a series of messages that can
be exchanged between the recognizer and the system. From the recognizer perspective,
these would be the messages sendable to the system:

• Register (or unregister) to a type of agent

If a recognizer is registered to a type of agent (for instance a “touch agent”), when
a new agent of this kind appears in the system, the recognizer is notified. This
message will typically happen in the recognizer’s initial state.

• Register (or unregister) to an agent’s event type

Given an agent, the recognizer subscribes to its events. For instance, given a touch
agent, it could be possible to register to its update events (movement, or pressure).
In the evaluation state, the recognizer will subscribe or unsubscribe to different
type of the agent’s events, depending of the pattern of the associated gesture.

• Acquire an Agent (preventing other recognizers from getting its exclusivity)

By acquiring an agent, the recognizer expresses its interest in it, communicating
the system that it is currently evaluating if the agent is part of a given gesture. This
message will be responded by the system with the result of the operation: true for
success acquiring the agent; false for failure acquiring it. This prevents the agent
from being assigned to other recognizers (from another program, for instance),
until this recognizer dismisses it (due to conclusion or to nonrecognition). The
recognizer will typically acquire agents in the evaluation state.

• Confirm an Agent (requesting the Agent exclusivity)

After successfully acquiring an agent and checking for its events, the recognizer may
conclude that it is part of the expected gesture. It then proceeds to confirm it. This
message will only be issued by the recognizer when attempting to transition from
the evaluation state to the recognition state. The response from the system may
not be immediate (we will address disambiguation delay later in Section 5.6.3),
and until then the recognizer remains in the evaluation state. If the exclusivity

146

5.6 Implementation of GestureAgents Framework

system recognizer

subscribe touch agents

new touch agent T

acquire agent T

acquire: true

subscribe T.move

report T.move events

confirm agent T

exclusivity granted
report T.move events

dismiss agent T

Initial state

Recognition state

Finished state

Evaluation state

Agent is new

Disambiguating

Exclusivity granted

Agent recycled

Figure 5.8: Protocol representation of the “straight line over a widget” gesture recogni-
tion example.

is finally granted by the system, the recognizer will receive a message from the
system notifying so. If the system does not grant the exclusivity, it will send a
message forcing the recognizer to fail.

• Dismiss an Agent

An agent can be dismissed in order to be reclaimed by the system, for being
assigned to other recognizers. This may happen when a recognizer voluntarily
considers that an acquired agent is not part of the expected gesture, or when
confirmed agents are part of a gesture which the recognizer considers finalized.
Also, when a recognizer fails, all the acquired and confirmed agents are forcefully
dismissed.

The system will send signals to the recognizer, both (i) in response to its requests, (ii) in
the case of acquiring an agent and, on its own prerogative, (iii) for notifying the presence
of new agents, (iv) for transmitting agents’ events, (v) for granting the exclusivity over
an agent, or (vi) for forcing the recognizer to fail.

To illustrate how this protocol works, we will detail a possible example of a recognizer’s
life-cycle, based on a recognizer that implements the recognition of the gesture “straight
line over a widget” in a tabletop system, as represented in Figure 5.8.

In this example, when the application starts, the recognizer is instantiated by the ap-

147

5 Multi-Application systems: GestureAgents

plication and it starts in its initial dormant state. It then subscribes to the touch agent
type to receive new agents’ announcements. Each time the system notifies the recog-
nizer of the presence of a new touch agent, the recognizer checks that this agent is near
a widget, as its gesture should be related to one of them. If the touch agent happens to
be near a widget, the recognizer declares its interest in the agent by acquiring it, and
entering into its evaluation state.
If this agent is not yet assigned in exclusivity to any other recognizer, the system accepts
the query and communicates it to the recognizer, which subscribes to this agent’s move-
ment events, in order to track the trajectory of the touch. While the touch agent slides
through the surface, the system sends the corresponding agent events related to this
movement. With every update, the recognizer keeps checking if the overall movement is
indeed a straight line, and if it is crossing the widget nearby.
When the touch crosses the widget, the recognizer notices that the events definitively do
match its expected gesture pattern, and it confirms the already acquired touch agent,
thus requesting its exclusivity. If, at this moment, no other recognizer is acquiring it, the
system confirms the exclusivity to the recognizer. With this confirmation, the recognizer
moves to the recognition state, and starts receiving the events from the touch agent.
When the recognizer decides that the gesture is completed, it finishes by dismissing the
agent in the process.

5.6.3 Restrictions on the Behaviors of Recognizers

The good functioning of the described protocol depends on the recognizers implementing
the protocol correctly, but also on respecting some good practices. In particular, during
all the time one recognizer stays in its evaluating state, it is preventing other (possibly
correct) recognizers to get the agents exclusivity and enter their own recognition states.
An ill-coded recognizer, for instance, could just acquire all the agents in the system,
and never fail or confirm them. This would indefinitely prevent all other recognizers
to successfully earn the agents’ exclusivity and thus no recognizer would ever actually
recognize their corresponding gestures.
Even when using correctly implemented recognizers, a delay between a recognizer con-
firming an agent and getting its exclusivity can be caused by another recognizer blocking
the agents. This disambiguation delay is specially problematic with continuous gestures
(Figure 5.9).
To minimize the disambiguation delay between the recognizer confirming the agents and
getting their exclusivity (pictured in Fig. 8), recognizers must decide as soon as possible

148

5.6 Implementation of GestureAgents Framework

Symbolic (Discreete, Offline) gestures Continuous (Online) gestures

Recognition Recognition

Control

Fail Fail

Recognize

Control

Disambiguation delay

Figure 5.9: Disambiguation delay occurs between the evaluation state (black) and the
recognition state (green).

whether a stream of input events can be or not be assigned to a gesture, thus minimizing
their stay in the evaluation state.
Another consequence of this recognition process protocol is that confirming agents is a
final decision. Once a recognizer enters the recognition state, the gesture should always
be valid, and if the agent’s events are no longer considered part of the gesture, the
recognizer should finish and release all the agents’ exclusivity. The agents can then be
used again by other recognizers, in the condition of recycled agents, as their appearance
is caused by the release form a previous recognizer, instead of being new.
When a continuous gesture is already identified and begins its control, switching to
identifying this same agent as performing another gesture in the middle of its action
could cause confusion (explicit exceptions can be defined though using policies). Imagine
a user starting to move a virtual element and suddenly painting over it with the same
gesture because in the middle of performing the gesture the system decided that painting
was more appropriate than moving.

5.6.4 The GestureAgents System

The rationale behind these messages is embedded in the functioning of the system, while
protecting the agent exclusivity. For each agent, the system manages a list of acquiring
recognizers (those that are interested in the agent) and a slot for only one completing
recognizer (that considers this agent as part of its gesture). When a recognizer acquires
the agent, the system simply adds it to this list, unless this agent’s exclusivity is already
given.
When a recognizer confirms an agent requesting its exclusivity, the system removes the

149

5 Multi-Application systems: GestureAgents

New Disambiguation

Exclusivity GrantedRecycled

Acquire

Confirm

Acquire

Can

Fail

Complete

Finish

Acquire

Figure 5.10: Life cycle of an agent

recognizer from the acquired list and puts it into the completing slot. If the slot is
not empty, the system decides (via the consultation of several policies) whether or not
the new candidate should replace the old one, and the loser (whichever it is) is forced
to fail. In general, exclusivity is granted only when the list of acquiring recognizers is
empty, which usually happens when alternative acquiring recognizers fail recognizing the
gesture, and thus dismiss the agent, removing them from the agent’s list of acquiring
recognizers.

When a recognizer dismisses an agent of which it had its exclusivity, this agent can be
used again by other recognizers; the system sets a flag marking it as “recycled” and
notifies other interested recognizers as if it was a brand new agent (an overall picture of
the states and transitions of an agent is shown in Figure 5.10).

This mechanism actually prevents agents from being used as a part of a gesture, until
no other recognizers are interested. When two competing recognizers are sure that an
agent is part of their gesture, a decision has to be made. Policies, an ordered list of
specific rules that apply to specific situations, will deal with cases of conflict, defining
priorities and compatibilities between recognizers.

The decisions to be taken by the system can be defined by using two sets of policies,
completion_policies and compatibility_policies:

• The completion_policies are consulted when confirming an agent. They decide
whether the new recognizer candidate for exclusivity can replace the old one in
the completing slot, defining a priority between two competing recognizers. For
instance, a system could decide that recognizers from applications with a given

150

5.6 Implementation of GestureAgents Framework

priority, will win over non-prioritized ones , or an application could enforce that a
pinch zoom recognizer always wins a drag move recognizer.

• The compatibility_policies are used to decide whether a recognizer can be given
the exclusivity over one agent, while another one is still acquiring it. Although,
at a first glance, this may seem as if we were breaking the exclusivity rule, we are
in fact only affecting the disambiguation mechanism, as we will still only allow
one of the recognizer to use the events from this gesture. What this mechanism
is in fact allowing is having recognizers in a “latent” state, which will allow other
recognizers to use the agent until they can confirm it, thus finally provoking the
recognized gesture to end. Compatibility_policies thus permit defining a priority
between a confirmed recognizer and “latent” aspirants.

A common generic policy set that could be added to a system using GestureAgents, would
be one prioritizing complex gestures over simple gestures. For instance, in a tabletop,
prioritizing gestures involving multiple fingers over gestures involving one single finger.
If we measure this complexity by the number of acquired agents, it would be simple
to define a completion_policy, guaranteeing that complex gesture recognizers will be
granted the agents’ exclusivity whenever they successfully recognize a gesture, in spite
of the less complex gesture recognizers acquiring them:

@Agent . completion_policy . rule (0)

def complex_beat_simple (r1 , r2):

if len (r1. _agentsAcquired) < len (r2. _agentsAcquired):

return True

By defining a similar compatibility_policy, we would allow simpler gestures to be recog-
nized until a more complex gesture gets the exclusivity. This pair of polices would also
solve the previously mentioned pinch-zoom versus drag-move gesture problem.

@Agent . compatibility_policy . rule (0)

def simple_can_recognize_until_complex (r1 , r2):

if len (r1. _agentsAcquired) < len (r2. _agentsAcquired):

return True

At this point, it has to be noted that the current implementation is not using yet a
real, portable network protocol, but is instead prototyped as a relationship between
Python objects inside the system and the application. However, it follows this pattern
closely. In the current prototype implementation, policies can be defined at many levels,
and can be introduced by applications, recognizers or the system itself. In a more
conservative implementation, with a network-based coordination protocol, it could be

151

5 Multi-Application systems: GestureAgents

more interesting that system-wide policies would only be defined inside the system, thus
preventing arbitrary code from injected application-defined policies to be executed by
the system. Application-based policies could be instead enforced at the application level.
At the moment, two different systems are provided with GestureAgents source: one
using pygame4 as a rendering engine and another using OpenGL.

5.7 The GestureAgents Recognition Framework

Apart from the agent exclusivity coordination protocol for multi-user and multi-touch
interaction, GestureAgents provides a gesture recognition framework based on the same
agent exclusivity concept. It provides gesture composition (i.e. describing a gesture in
terms of a combination of previously defined simpler ones) by stacking layers of agent-
recognizer relations, and by considering that recognized gestures can also be agents (such
as double-tap agents). The framework also takes advantage of the agent exclusivity
competition between recognizers for solving internal disambiguation for simultaneous
instance of the same gesture recognizer, by treating them as different gestures that have
to compete for the agent’s exclusivity. It also provides a mechanism to quickly dismiss
recognizers based on the application context.

5.7.1 Recognizer composition

We call recognizer composition the ability to express a gesture in terms of a combination
of previously defined simpler ones. The way GestureAgents allows it, is by presenting
simpler gestures as agents whose events may be used by higher-level recognizers. This
is done by associating agents to Gestures in a one to one relation: A gesture recognizer
instance, representing an ongoing gesture being performed, is associated to an agent that
manages the events issued by the gesture itself. For instance, a tap recognizer consumes
finger events, and is associated to the tap agent, which issues tap events that can be
consumed by a double tap recognizer (see figure 5.11 and listing 5.1 for an example of a
gesture recognizer implementation using composition).
This strategy creates a tree of recognizers for each top-level gesture, connected to sim-
pler gestures via their associated agents. The ability to complete the top gesture will
depend on receiving the exclusivity of the agents of the more simple gestures, which
in their turn will compete for the exclusivity of the agents they are interested in: the
agent exclusivity rule is enforced inside every agent individually, and the disambiguation

4http://www.pygame.org/

152

http://www.pygame.org/

5.7 The GestureAgents Recognition Framework

class DoubleTapAgent (Agent) :
eventnames = (" newDoubleTap " ,)

class RecognizerDoubleTap (Recognizer) :
def _ _ i n i t _ _ (s e l f , system) :

Recognizer . _ _ i n i t _ _ (s e l f , system)
s e l f . agent = None
s e l f . f i r s t a p = None
s e l f . secondtap = None
s e l f . r eg i s t e r_even t (

s e l f . system . newAgent (RecognizerTap) , RecognizerDoubleTap . EventNewAgent)
s e l f . t ime = 0.3
s e l f . maxd = 10

@newHypothesis
def EventNewAgent (s e l f , Tap) :

s e l f . agent = DoubleTapAgent (s e l f)
s e l f . agent . pos = Tap . pos
s e l f . announce ()
s e l f . un reg is te r_even t (s e l f . system . newAgent (RecognizerTap))
s e l f . r eg i s t e r_even t (Tap . newTap , RecognizerDoubleTap . F i rs tTap)

def F i rs tTap (s e l f , Tap) :
s e l f . f i r s t a p = Tap
s e l f . un reg is te r_even t (Tap . newTap)
s e l f . r eg i s t e r_even t (

s e l f . system . newAgent (RecognizerTap) , RecognizerDoubleTap . EventNewAgent2)
s e l f . exp i re_ in (s e l f . t ime)
s e l f . acqu i re (Tap)

@newHypothesis
def EventNewAgent2 (s e l f , Tap) :

i f s e l f . d i s t (Tap . pos , s e l f . f i r s t a p . pos) > s e l f . maxd :
s e l f . f a i l (cause="Max d is tance ")

else :
s e l f . un reg is te r_even t (s e l f . system . newAgent (RecognizerTap))
s e l f . r eg i s t e r_even t (Tap . newTap , RecognizerDoubleTap . SecondTap)

def SecondTap (s e l f , Tap) :
i f s e l f . d i s t (Tap . pos , s e l f . f i r s t a p . pos) > s e l f . maxd :

s e l f . f a i l (cause="Max d is tance ")
else :

s e l f . secondtap = Tap
s e l f . un reg is te r_even t (Tap . newTap)
s e l f . cance l_exp i re ()
s e l f . acqu i re (Tap)
s e l f . complete ()
s e l f . f a i l _ a l l _ o t h e r s ()

def execute (s e l f) :
s e l f . agent . pos = s e l f . secondtap . pos
s e l f . agent . newDoubleTap (s e l f . agent)
s e l f . f i n i s h ()

def d u p l i c a te (s e l f) :
d = s e l f . get_copy (s e l f . system)
d . f i r s t a p = s e l f . f i r s t a p
d . secondtap = s e l f . secondtap
return d

@staticmethod
def d i s t (a , b) :

dx , dy = (a [0] − b [0] , a [1] − b [1])
return math . s q r t (dx * * 2 + dy * * 2)

Listing 5.1: A simple double-tap recognizer
153

5 Multi-Application systems: GestureAgents

App

RecognizerTap
Agent Tap

Agent Finger
Recognizer Double-Tap

Agent Double-Tap

Figure 5.11: Example of composition: double-tap recognizer consumes tap events.

process spreads into different layers that are more manageable and simple (but that lack
a global perspective, as we will see in Section 5.8).

As the original Agent keeps sending events, recognizers start to match these to their
gesture patterns and some will start to fail. Eventually only one branch of the original
tree will remain active, only then can we consider this gesture successfully disambiguated
(see Figure 5.12).

5.7.2 Recognizer instances as Hypotheses

The previous mechanism is useful not only to disambiguate between different types of
gestures (swipe gesture vs tap gestures), but also to disambiguate between different
possible gestures of the same type (double tap gesture 1 vs double tap gesture 2).

Allowing concurrent multi-gesture interaction allows for having the same gesture per-
formed in two places at the same time, which can bring difficulties. A hypothetical
recognizer that takes into account more than one of these gestures as input Agents must
face the decision of whether a new Agent is part of the tracked gesture or not and acquire
it in consequence. This can be problematic as the type of the new Agent may not be
known a priori. Imagine a double-tap recognizer that has already recognized the first
of its taps and is waiting for a second one, consider that before the second tap is per-
formed another user performs a tap somewhere else on the table as part of a completely
unrelated double tap (see Figure 5.13). In this case our double-tap recognizer would fail
after realizing this new tap is too far away to match its gesture pattern and that would
be the end of it, even though the first user might have been just about to perform a
second tap.

We can use the technique of competition for Agent Exclusivity to solve this type of
problems. This can be done by creating a duplicate of the recognizer instance before
taking the decision of considering the new agent as part of the gesture or not. Both
decisions are then evaluated, one on each instance. Eventually, these two instances must
compete for the exclusivity of Agents as any other pair of recognizers. At some point,
the instance that took the wrong decision will fail and let the good instance win. We

154

5.7 The GestureAgents Recognition Framework

Touch
Agent

Tap
Recognizer

Tap Agent

Swipe
Recognizer

Swipe Agent

2Tap
Recognizer

2Tap Agent

3Tap
Recognizer

3Tap Agent

Ne
w

Ag
en

t

Ne
w

Ag
en

t
New Agent

New Agent

Re
m

ov
eT

ou
ch

Rem
oveTouch

N
ew

 T
ap

N
ew

 Tap

①New Touch on Surface
②Remove finger off Surface
③Exclusivity granted to Tap Recognizer
④After second Tap, time passes

Eval

Recog

Fail

Eval

Eval

Eval

Fail

Recog

Figure 5.12: Recognizer tree created by three recognizers registered by the application: A
Swipe recognizer, a double-tap recognizer and a triple-tap recognizer. Both
double and triple tap recognizers use composition with a tap recognizer.
The actions regarding the user performing a double top on the surface are
depicted.

155

5 Multi-Application systems: GestureAgents

consider every recognizer instance as a gesture hypothesis; every irreversible decision
made generates a new hypothesis.
On our double-tap recognizer example, when the new tap is detected, a duplicate of the
recognizer will be created, and only one of them will take this new agent into consid-
eration while the other will wait for other taps. When the position of the new tap is
evaluated and identified as being too far away from the first, only one of the recognizers
shall fail. The same will happen when the other double-tap is completed, as seen in
Figure 5.14.
As in this case the competition is not between two unrelated recognizers programmed
by potentially different people, but between two instances of the same recognizer, the
programmer can preview the obvious conflicts between the multiple instances generated
by this method. For this reason, an instance can ask the acquired Agent to force-fail all
of the competing instances of its same type when it is sure that they are wrong.
This technique can also allow for a simple factory-like strategy for the use of recognizers.
At the beginning, one instance of every recognizer is created, this instance is in its initial
state. As any time a new Agent is introduced we create a new hypothesis-instance, there
will always be one (and only one) recognizer instance in the initial state, ready for new
Agents to be tracked while all other instances are coupled with existing Agents. It is
important to mention that none of the Agents associated to recognizers are duplicated
when the presence of a new input creates a new hypothesis: An agent is not fed with
events until the recognizer confirmed its source Agents, and this does not happen until
only one instance is left.

5.7.3 Context polling

We mentioned before that context could be used for disambiguation. Instead of forcing
the application to declare interaction areas or to manually activate and deactivate ges-
tures at certain moments, we use a simple technique that can be called context polling.
Every time a gesture to which an application is subscribed issues a new Agent, the
application is asked whether it is interested in it or not. At this moment the agent only
has some initial information, but nothing forbids the recognizer from asking again at
any time when it has more complete data. When asked, the application can dismiss the
Agent, and then the recognizer shall fail. As this is done recursively, all the intermediate
recognizers over which this final gesture was edified fail as well.
An example of the benefits of this technique can be explained with a Tap and a double
Tap: in contexts (areas, states...) where only a Tap is possible, the system does not

156

5.7 The GestureAgents Recognition Framework

t
Double Tap

Not a Double Tap
pos

1

2

3

4

Not a Double Tap

Double Tap

Figure 5.13: Two concurrent double-taps in different places can confuse gesture recog-
nizers.

R0

R1 1

R3 1
2

R5 1
3

R1 1

R5 1
3

R0

1 2

R1 1

R0

R1 1

R0

3

R0

Timeout

R2 2

R4 2
3

R2 2

R6 3 R6 3

R2 2

R10 1
4

R1 1

R0

4

R9 2
4

R2 2

R6 3

R7 4 R7 4

R8 3
4

R9 2
4

R5 1
3

Figure 5.14: Recognizer instances as hypotheses strategy for the recognition of the two
concurrent double-taps of Figure 5.13. Every irreversible decision creates a
new hypothesis. At the end only the correct hypotheses are left.

157

5 Multi-Application systems: GestureAgents

have to wait until the double Tap fails in order to report the Tap; in this way the Tap
is recognized faster.

An advantage of using context in this way, instead of directly coding it into the sys-
tem, is that it makes the system much more flexible and independent, allowing multiple
possible application management schemes: we allow using areas to delimit apps or wid-
gets, but do not enforce doing it, as the system is agnostic. It also places the code
for context evaluation where the context actually is: in the application code and not
into an intermediate layer, were we should foresee all the possible aspects to take into
consideration.

5.7.4 Link with the application

The application cannot directly subscribe to events from Agents. In order to enter into
the competition for agent exclusivity, it would need to acquire and confirm gestures,
which it cannot do because it is not a recognizer. The application needs a way to
indirectly subscribe to the related Agents, which is done via a Fake Agent created by
a special recognizer named AppRecognizer that simply accepts any kind of input. It
provides the missing piece in order for an application to enter the recognizer competition.
It also offers a special Agent type that mimics the original Agent but does not need to
be acquired nor confirmed.

If we observe the full development of the Agent-Recognizer tree from the sensors to the
application, we will always find an AppRecognizer just before reaching the application.
Then the application only has to comply with the context polling mechanism, but not
with the specific mechanics of the recognizer/Agent relationship.

5.7.5 Provided Gestures

A library of TUIO-based gesture recognizers is provided with GestureAgents: Tap, stick,
double-tap, move and zoomrotate. Their implementation is also a guide to the good
practices of creating gesture recognizers with the framework.

5.8 A second iteration: Composition with 3rd Party Apps

Recent developments in the framework have simplified the first layer of agent-recognizer
relation, the one of the system-recognizer communication. By encapsulating every rec-
ognizer relationship tree inside an isolating proxy, the protocol becomes much clear and

158

5.8 A second iteration: Composition with 3rd Party Apps

eliminates possible incompatibility issues due to the use of the compositing feature of
the gesture-recognition framework. In the previous structure, there was no distinction
between end-user gestures and sub-gestures.

5.8.1 A working gesture composition example

The agent exclusivity mechanism is designed to prevent unconfirmed gesture recognizers
to send any type of event via their associated agents and thus spread false informa-
tion. For example, a circle recognizer will not send any circle-related event until it
gets the exclusivity over its acquired agents. This has an important effect on gestures
that take advantage of the gesture composition capability and split its recognition into
sub-gestures: top-level gestures will not receive any event from them until they have
completed (and so got the exclusivity over the original agents). The disambiguation
process is then computed in a bottom-up approach: first sub-gestures recognize and
compete for exclusivity, then top-level gestures start recognizing. Because the problem
we are fixing in this section arises from this very property, it is crucial to understand
this effect, although an in-depth explanation of the GestureAgents algorithm is beyond
the scope of the current paper (we advise to refer to the original publication for a more
detailed description).

Let us imagine a setting where there is a system that works with the GestureAgents
framework, running two applications: AppA (accepting double-tap gestures) and AppB
(accepting triple-tap gestures). The two applications are made by the same developer,
thus it seems logical to reuse some code. In our case we end up having 3 gesture
recognizers (see figure 5.15):

• A tap recognizer (RT), identifies taps from touch events issued by (raw) touch
agents.

• A double-tap recognizer (RDT), identifies double-taps from events issued by tap
agents.

• A triple-tap recognizer (RTT), identifies triple-taps from events issued by tap
agents.

When the user starts performing a tap with her finger, a touch agent begins sending
events (touch in, touch out). RT acquires the touch agent, blocking any other possible
recognizer from getting its exclusivity. When the input events fully match the gesture
(touch in + touch out = tap) it completes the gesture, requesting the agent’s exclusivity.
As there is no other gesture recognizer interested in it, the exclusivity is granted to RT.

159

5 Multi-Application systems: GestureAgents

AppBAppA

Recognizer Double-Tap
Agent Double-Tap

Recognizer Triple-Tap
Agent Triple-Tap

RecognizerTap
Agent Tap

Agent Finger

RecognizerTap
Agent Tap

Agent Finger

t

tap 1 tap 2

Figure 5.15: Above, a representation of a double-tap gesture over time. Bellow, the
recognizer tree created by two applications with two gestures (double-tap
and triple-tap) that share a sub-gesture (tap). The dashed components
appear at the moment that the second tap is performed by the user. The
colored areas highlight the paths where events actually flow at some point
of time.

160

5.8 A second iteration: Composition with 3rd Party Apps

It is only at this point that the tap agent associated to RT, starts sending events -
basically a tap event- to the RDT and RTT. Those see the agent as a possible part of
their gestures (both gestures start with one tap) and acquire it.
When this process happens again with a second tap, the sequence matches with the
double-tap gesture, so the RDT completes requesting the exclusivity over the acquired
tap agents. But this is still not granted, because RTT is still blocking them.
Eventually, after some small time period, RTT realizes that there is no third tap, and as
it does not match a triple-tap pattern, it fails. When failing, RTT stops blocking the two
tap agents, allowing them to give its exclusivity to RDT. Only at this time, double-tap
agent can send its event, a double-tap event to AppA.

5.8.2 Two apps, two developers and composition: Not working

The above example shows a setting that was successfully tested with the original im-
plementation of the algorithm. Even when used by different applications, the gestures
were programmed and composed using common components. This works perfectly, but
what happens when the gestures are created by different developers, in the worst case
scenario, composing their gestures using equivalent but different implementations of the
same sub-gestures? Since the whole point of creating the GestureAgents framework was
to allow multiple applications with multiple gesture definitions by unrelated developers
to successfully share the interaction (input) interfaces, this is not a simple and isolated
bug, but a major conceptual problem.
We will study this in detail with a variation of the previous problematic context, looking
at the inner working of the algorithm so that we can see why this condition may lead
to an error: In our same system working with GestureAgents framework, there are
two different running applications by two developers, AppA (by Developer1, accepting
double-tap gestures) and AppB (by Developer2, accepting triple-tap gestures), both using
custom recognizers. The recognizer list would look like this (see figure 5.16):

• A tap recognizer (RT1), identifies taps from touch events issued by (raw) touch
agents developed by Developer1.

• A double-tap recognizer (RDT), identifies double-taps from events issued by RT1
agents developed by Developer1.

• A tap recognizer (RT2), identifies taps from touch events issued by (raw) touch
agents developed by Developer2.

• A triple-tap recognizer (RTT), identifies triple-taps from events issued by RT2
agents developed by Developer2.

161

5 Multi-Application systems: GestureAgents

AppBAppA

Recognizer Double-Tap
Agent Double-Tap

Recognizer Triple-Tap
Agent Triple-Tap

RecognizerTap1
Agent Tap1

RecognizerTap1
Agent Tap1

RecognizerTap2
Agent Tap2

RecognizerTap2
Agent Tap2

Agent FingerAgent Finger

t

tap 1 tap 2

Figure 5.16: Above, a representation of a double-tap gesture over time. Bellow, the rec-
ognizer tree created by two applications with two gestures (double-tap and
triple-tap) with different implementations of the same sub-gesture (tap).
The dashed components appear at the moment that the second tap is per-
formed by the user and colored areas highlight the paths where events ac-
tually flow at some point of time.

The same input used in the previous example, consisting of 2 valid taps, should theoret-
ically match the pattern of double-tap and send a double-tap event to AppA. But this is
not the case, as we can see in the actual development of the algorithm.

When the user starts performing a tap with her finger, a touch agent begins sending
events (touch in, touch out). The two tap recognizers (RT1 and RT2) acquire the touch
agent, preventing each other from getting its exclusivity. When the input events fully
match the gesture (touch in + touch out = tap) they both try to complete the gesture,
requesting the agent’s exclusivity. The first tap recognizer to ask for the exclusivity
is RT1, but it gets on hold, as RT2 is still blocking the agent. When RT2 asks for
exclusivity to the touch agent, the agent has to make a decision: whether to fail RT1 or
RT2. The existing policy "last recognizer replaces previous" requires it to fail RT1 as it

162

5.8 A second iteration: Composition with 3rd Party Apps

was the first requesting the exclusivity, and so is considered the less complex gesture.
Notice that, as RT1 fails, it will never send events to RDT, preventing it to recognize
any type of input, even a correct one.
When RT2 gets the exclusivity it sends a tap event through its RT2 agent. RTT will
then acquire the agent as it seems to be part of a triple-tap.
The previous sequence is repeated for the second tap, leading to a RTT with two RT2
agents acquired, waiting for a third one. Eventually, after some small time period, RTT
realizes that there is no third tap, and as it does not match a triple-tap pattern, it fails.
The correct gesture recognizer that should have received the input -RDT- does not have
the chance to even notice that there is some interesting input coming to the system,
because any tap-shaped input will be disputed over by RT1 and RT2, and the second
one will always win. The competition between two different implementations of the
same gesture recognizer, which is not even directly used by the application, is preventing
the competition between more high-level (valid) recognizers and thus preventing some
gestures from being detected.
As we can see, the disambiguation algorithm fails because it assumes that the lower-
level components of the recognizers will be shared, and that may not be the case if we
allow total freedom for app developers to compose gestures when implementing gesture
recognizers (as the objective of the system is to allow expressive, rich, custom gestures).
Although the mechanisms of the GestureAgents algorithm, individually, are reasonable
solutions dealing with the complex problems that arise with the setting described in the
motivation, combining them the way it is proposed, leads to problems like the aforemen-
tioned. Solving this problem may not be trivial, and removing any of the main features
may not be desirable, as it may have an impact on several other internal mechanisms.
So we must revisit the overall organization of the algorithm to deal with this.

5.8.3 Revisiting gesture composition

Agent exclusivity is the main contribution of GestureAgents, and it works perfectly when
used individually. It seems though that the problem lies in the way the composition strat-
egy splits the disambiguation problem into several local layers, which have no knowledge
of the overall top-level gestures, and thus prevents information to flow to those top-level
gestures without making a final decision first. It is clear that gesture recognizer compo-
sition, in the way defined by GestureAgents, is a valuable tool to leverage the effort put
onto defining new gestures. So the obvious solution, removing composition altogether,
is not desirable.

163

5 Multi-Application systems: GestureAgents

This composition strategy is not the only one possible. Other approaches exist that
allow gesture composition without the creation of new gestures: GISpL (Echtler and
Butz, 2012), for instance, makes the distinction between gestures and features, features
being conditions that have to be met in order for the gesture to be fully recognized.
Composition is allowed at a feature level, but not at gesture level. As a consequence
of that, the algorithm is much more clear, as it separates the recognition from the
disambiguation at all levels. This means, however, that many techniques for allowing
complex gestures are not directly applicable here, as they are based in inter-gesture
disambiguation and would fail with features.

Another possible solution is that disambiguation could come in two different steps: in-
side the tree created by a top-level gesture, and between different trees. Inside a given
tree, all the components are known at development time by the developer, and can be
tested and debugged. We can then maintain the original algorithm, with all its caveats
as any problem can be detected. In the case of dealing with different trees of recognizers,
we must change the way this is disambiguated, by adopting the philosophy of GISpL:
disambiguation between complete gestures, not between features (or components). We
can make this distinction by creating virtual recognizer universes and isolating the ges-
ture tree inside them, so that, in fact, from its perspective, it is alone. The containers
of this virtual universes behave like one-layer recognizers with no composition, letting
agent exclusivity to successfully disambiguate.

We next present the modified algorithm implementing this last solution: we enable
disambiguation without the burden of recognizer composition, between totally different
top-level gestures, while still enabling composition in a nested gesture universe inside
every top-level gesture, where no runtime incompatibilities can arise.

5.8.4 Implementation

To remove the problem of combining composition and different top-level gestures, we
fake removing composition by nesting it inside a top-level fake recognizer that emulates
the behavior of both the lowest-level recognizers that would normally directly receive
raw input events, and the highest-level recognizer that defines the gesture being recog-
nized. The idea is to encapsulate recognizer trees, composed by top-level gestures and
sub-gestures, into a meta-recognizer that behaves like a single (not composed) gesture
recognizer instead. From the program and system perspectives, it would appear as if
composition is not used, and thus we avoid the problems that it introduces in the agent
exclusivity algorithm.

164

5.8 A second iteration: Composition with 3rd Party Apps

We found that the best way of implementing this on top of GestureAgents, was reim-
plementing AppRecognizer, a dummy recognizer that already acted as a proxy between
the top-level recognizer and the application, so that it would enclose all the former tree
inside itself. To do this we needed to create a proxy recognizer (SensorProxy) that would
mediate between original agents (sensors) in the global recognizer tree, and the rest of the
tree, inside of AppRecognizer. Its behavior from both the global and local perspectives
would be modeled to allow the local tree to progress matching gestures, without having
to get the exclusivity of the sensors by the sub-gesture recognizers. From the point of
view of the sensors, the proxies represent top-level gestures without composition, and
from the one of the local tree, they represent the sensors, as if there was not any other
top-level recognizer competing for them (see figure 5.17 to see how the failing example
would look like with this variation)

As soon as the AppRecognizer receives events from the top-level recognizer, it knows
that the input effectively matches the gesture and it then forces the involved proxies to
ask for the exclusivity over the original sensors. Meanwhile AppRecognizer caches the
events from the top-level recognizer, until all the proxies get confirmed. It then forwards
the events to the application.

The first step achieved in this correction process was adapting the framework for making
it work with independent recognizer trees. The original version assumes that there is
only one source of agents for every recognizer type by using singletons for the NewAgent
events. We thus encapsulated all the NewAgent functionalities into a class that would
be the manager of the tree -the system-, so that recognizers did not directly subscribe
to absolute NewAgent event sources, but rather request them to their system.

Implementation details get complex when allowing one of the features of GestureAgents:
Recognizer instances as hypotheses. In the original framework, when a recognizer has to
take an uninformed decision, such as acquiring an agent as a part of a gesture, it du-
plicates itself to cover both possibilities. The mechanism underlaying these duplications
was specially designed to work as independently as possible, making it very difficult to
move this functionality to the system managing the tree. This means that the entire
trees do not duplicate when any recognizer (top-level or not) takes this kind of deci-
sion, as it would be desirable if translating this philosophy to the meta-gestures, leaving
instead a single tree (with multiple top-level recognizers, from individual duplications)
shared by many AppRecognizers, each one focusing on one top-level gesture recognizer
agent.

This has an impact on the way the list of proxies required to be confirmed before Ap-

165

5 Multi-Application systems: GestureAgents

t

tap 1 tap 2

AppRecognizer AppRecognizer

AppA AppB

Recognizer Double-Tap
Agent Double-Tap

RecognizerTap1
Agent Tap1

RecognizerTap1
Agent Tap1

SensorProxy Finger
Agent Finger

SensorProxy Finger
Agent Finger

Recognizer Triple-Tap
Agent Triple-Tap

RecognizerTap2
Agent Tap2

RecognizerTap2
Agent Tap2

SensorProxy Finger
Agent Finger

SensorProxy Finger
Agent Finger

Agent FingerAgent Finger

Figure 5.17: Above, a representation of a double-tap gesture over time. Bellow, the rec-
ognizer tree created by two applications with two gestures (double-tap and
triple-tap) with different implementations of the same sub-gesture (tap) with
the modified algorithm. The dashed components appear at the moment
that the second tap is performed by the user and colored areas highlight
the paths where events actually flow at some point of time.

166

5.8 A second iteration: Composition with 3rd Party Apps

pRecognizer can complete is computed: when a sub-gesture completes a sensor proxy, it
is difficult to know which top-level recognizer will be finally affected by this action. The
best we can do is to assume that all the subscribed top-level gestures (searched by brows-
ing the tree) will benefit from that action. This is technically not necessarily true as,
theoretically, a recognizer would be able to withdraw its interest in a sub-gesture without
failing, but this capability is not used when using the recognizer instances as hypotheses
technique, so it should not be a problem with correctly-implemented recognizers.

5.8.5 Effects on Policies

In GestureAgents, the rules solving situations of clashing gesture definitions are defined
by policies inserted by the developer at any level. Those rules are evaluated by the agents
and thus only have the information available for its own position on the recognizer tree.

Similarly to the problem described in the present paper, the lack of global information at
the agent level had some impacts in this aspect: policies dealing with conflicting gestures
would only work for gestures that were directly competing for the same agent, but not
when competing through their sub-gestures.

Also, the idea of having policies related to the applications, such as having priorities
between apps, was before very difficult to implement, as many apps could perfectly
share gesture recognizers.

With the modified algorithm, the recognizer trees created by top-level gestures are con-
fined inside blocks in a per gesture and per application basis. This means that at the
global level the owner of every gesture can be determined, allowing easy application-
oriented policies, and top-level gestures are not masked behind sub-gestures, easing the
creation of robust priorities between gestures.

5.8.6 Portability

The change we made to the algorithm has a very limited impact over the way gestures,
apps and systems using GestureAgents are programmed, rendering the adaptation of
previous code an easy task. Most of the changes that previous recognizers’ and applica-
tions’ code has to suffer relates to enabling recognizers to accept a system (a manager of
a recognizer tree) as a creation parameter and to use it to subscribe to NewAgent events.
As a system implementor (creating systems using GestureAgents framework), the de-
veloper will only have to provide a system-like class implementing the new NewAgent
infrastructure. This can easily be achieved by using the framework’s System reference

167

5 Multi-Application systems: GestureAgents

implementation as a base class. Otherwise the change should be transparent to devel-
opers and users, being able to benefit from the changes on the algorithm seamlessly.

5.8.7 Testing

Dealing with a problem related to the design of an algorithm, rather than solving an
interaction issue, may be tricky. It is not a matter of how the users perceive or use the
resulting work, but instead, whether the algorithm itself works or not. In our experience,
solving the central issue of the present paper, it was a valuable resource having a way
to programatically test the output of the algorithm given a series of known inputs.

We created a testing infrastructure to programatically test hand-crafted examples of
input streams against recognizers using the framework. By defining a series of input
events, the gesture recognizer to be tested, and the expected result, the testing program
created an application that subscribed to the gesture recognizer and then simulated the
stream of events just to check if the output was the expected.

We created several tests, covering the complex cases involving multiple recognizers that
reproduced the problem described before, and also other more simple ones, to check for
regressions of the framework. We consider that this kind of testing is particularly useful
in complex interactive systems that pose a challenge in testing the full implementation
as a whole, more than subject testing. Only after passing all the tests (including the
ones that originally were failing, described before) we proceeded to informally test the
changes in a live environment.

5.9 Applications and systems created with GestureAgents

GestureAgents has been used in several systems and applications, testing several aspects
of the framework: a concurrency test application, a painting system demo, a map-
browsing demo and an orchestra conducting simulator. Unless stated, the examples
have been implemented in a Reactable Experience tabletop device5.

5.9.1 Original tests

In order to test the implementation of the framework, we programed an application
over it to run on a Reactable Experience tabletop and put it to the stress of multi-user
conditions (Earnshaw, 2012). In this simple application, a point is awarded whenever a

5http://www.reactable.com/products/reactable_experience/

168

http://www.reactable.com/products/reactable_experience/

5.9 Applications and systems created with GestureAgents

gesture is performed and recognized, and users need to collect as many points as possible
within a constrained time period.
The gestures used include a Tap, Double Tap, Tap Tempo (4 taps) and a variety of
waveforms with different shapes and orientations (see Figure 5.18). The score system is
an incentive for users to perform the gestures, and the time constraint is an incentive
for these gestures to be performed fast and in an overlapping fashion. As a result we
expect to have concurrent gestures occurring.
We performed experiments on it doing repeated measures over a single group of sub-
jects, users worked both alone and in pairs. We have analyzed application’s event logs
measuring the rate of concurrent interaction (CI) defined as:

CI =
gestures∑

i

duration(i)/InteractionT ime

where InteractionT ime is the total time on where there is at least one gesture being
performed.
We have found that the multi-user condition had a 11% higher concurrency ratio than the
single user condition with a significance of .037, this implies that there was a meaningful
difference in CI between conditions. We then conducted a questionnaire about the
user’s perception of how well the gestures were being identified but found no significant
difference in answers between conditions, implying that the framework performed just
as well on the high CI condition as on the low CI one.

5.9.2 Example Applications

A painting system constituted by two separate applications has also been created to test
both the agent exclusivity competition by recognizers, and the effects of the recognition
delay (see Figure 5.19, left). One application has recognizers for the tap, stick (straight
line) and paint (free movement) gestures, while another uses a double-tap recognizer in
a circular area. The results of the gestures of the first application are reflected in visual
elements (lines, dots and traces), while the second application erases the display when a
double tap is detected. As the double tap is only valid in a circular area, performing a
single tap inside the area would, at first, activate also the double-tap recognizer, to end
failing after a timeout call. This setting allowed to observe that the recognition delay
introduced by the double-tap happened only inside the area.
A map application, featuring typical pinch zoom and drag move gestures for manipulat-
ing a world map, as well as tap and stick gestures for annotating geographical locations

169

5 Multi-Application systems: GestureAgents

Tap:

Double Tap:

Tap tempo:

Envelope:

Equalizer:

Sine wave:

Triangle wave:

Saw wave:

Three finger
swipe:

Figure 5.18: Gestures tested

170

5.9 Applications and systems created with GestureAgents

Figure 5.19: A painting system (left) and a map browsing application (right) imple-
mented in GestureAgents

Figure 5.20: Program recognizing valid gestures from Kinect recordings.

and reseting the view respectively, has been created to test the different policies (see
Figure 5.19, right). The relationship between the pinch zoom and the drag move recog-
nizers requires the first to be able to overcome the agents completed by the second, thus
defining both a compatibility_policy and a completion_policy to achieve the effect.

5.9.3 Orchestra Conductor Gesture Identification

Finally, a fully “decoupled interface” application, consisting of an orchestra conductor
simulator for the detection of conductor movements using a depth camera, has been
developed in the context of PHENICX project (Gómez et al., 2013) (see Figure 5.20).

With the goal of creating a musical performance reinterpretation game-like experience,

171

5 Multi-Application systems: GestureAgents

we identified two different gestural information levels that could be identified both in a
professional conductor level and in a nonprofessional player level. The first one addresses
how the conductor’s generic movement features are related to high-level and perceptive
features of the music, such as loudness, complexity or tempo variation, and how they are
perceived and replayed by the users. The other one is symbolic gesture identification: the
actual symbols that are drawn in mid-air by the conductor that have a specific meaning
to be transmitted to the orchestra. After having covered the first in the previous sections,
we address the second in this one.

Hand gestures (symbols) used by conductors in real performances vary greatly. Apart
from some isolated instances through the piece, most of the time they are a translation
of the high-level perceptive musical properties into a movement that can be understood
by the orchestra. This language is not entirely defined, but a construction that the
orchestra must learn through the rehearsals with the conductor. In fact, every conductor
has his own language (or conducting style), which may differ from other conductors, and
dependent to the social and musical context of each concert (Konttinen, 2008).

In contrast, a set of formal, well-defined gestures for conducting exist, mainly used in
teaching and rehearsal contexts. These are used to transmit the tempo and beats and
have defined rules of how gestures must be performed. We think as them as good
candidates for our game-like context, as they would not have to change (and be learned
again) with every concert or conductor.

The recognition of the individual beat patterns from a well defined dictionary will allow
us not only to achieve the game-like experience in the non-professional setting, but also to
create methods to evaluate the quality of gesture performing in the context of conducting
classes. We take the objective of building a game-like directing gesture rehearsal program
as the motivation to build such recognition methods and testing them.

Approach

Many previous approaches to identify beat patterns (and other conducting symbols) use
machine learning techniques: from the most used methods are neural networks (Ilmonen,
1999) and Hidden Markov Models (Kolesnik and Wanderley, 2004). These techniques
use a set of annotated samples to train a model that will be used to classify the incoming
live data. This is very appropriate to detect which of the trained symbols is more likely
to represent the captured data, but totally unable to estimate the correctness of the
performed symbol according to a formal definition.

To identify the gesture symbol type from the data according to a formal pattern we must

172

5.9 Applications and systems created with GestureAgents

1 1

2

1 23 12 34

Figure 5.21: Graphical description of the gestures.

use an analytic approach that checks the user hand position and movement against this
pattern. First, we study the selected gestures set to identify their mandatory compo-
nents, and build a recognizer that checks if those components are present.

We acquired a corpus of performed gestures to be used as ground truth. Two sets
of recordings were acquired: one of an expert performing the beat pattern gestures
and another one of a real conducting teaching session. Examining those recordings we
asserted that in the class setting, this particular session was focused on practicing real
concert gestures and not the canonical beat patterns, rendering the recording as not
useful for our case. The expert recording was then selected as the only source of ground
truth, leaving out the teaching session set.

A gesture recognizer for every beat pattern was coded to match the formal definition of
each gesture and then tested against the recorded data.

Implementation

We chose GestureAgents as our developing framework. By allowing us to program each
gesture separately, we can optionally add any control gesture afterwards with minimal
effort.

For the initial set of gestures we choose these beat patterns (Figure 5.21), which we will
label 1T, 2T, 3T and 4T.

Those gestures are mainly characterized by a sequential vertical movement in two spaces:
the upper space, where the gesture begins and ends, and the lower space, where the
intermediate parts of the symbol are performed (see Figure 5.22). We started by charac-

173

5 Multi-Application systems: GestureAgents

Begin

End

Local minima and maxima

Figure 5.22: Key points, consisting of vertical local minima and maxima, in a beat pat-
tern gesture (3T).

k [1]. y < k [0]. y k [2]. y > k [1]. y k [2]. y < k [0]. y
k [3]. x > k [2]. x k [3]. x > k [1]. x k [3]. x > k [0]. x
k [3]. y < k [2]. y k [4]. y > k [3]. y k [4]. y > k [1]. y
k [4]. y < k [0]. y k [4]. x > k [2]. x k [4]. x > k [1]. x
k [4]. x > k [0]. x k [5]. x > k [1]. x k [5]. x < k [3]. x
k [5]. x < k [4]. x k [5]. y < k [2]. y k [5]. y < k [4]. y
k [6]. y > k [2]. y k [6]. y > k [4]. y k [6]. x < k [4]. x
k [6]. x < k [3]. x

Listing 5.2: Conditions for 3T recognizer.

terizing each gesture by the relative positions (not distances) of their alternating vertical
local minima and maxima, obtained with a simple sliding window of size w.

minima = {i | yi ≤ yn ∀n ∈ {i− w, i+ w}}

maxima = {i | yi ≥ yn ∀n ∈ {i− w, i+ w}}

keypoints = maxima0,minima0, ...,maximam,minimam,maximam+1

As an example, 3T beat pattern gesture consists of 7 key points, characterized by the
conditions of Listing 5.2. Note that by using relative positions instead of distances the
recognizer becomes scale invariant.

Another possible mechanism would be using a temporal pattern to match the gesture
instead of its spatial trajectory (Bergen, 2012). This strategy, however, requires to use

174

5.9 Applications and systems created with GestureAgents

Figure 5.23: Missrecognition of a partial 4T gesture as a 3T gesture.

the actual score to predict the expected key points in time, and does not take into
account the actual hand position, something essential when evaluating if the shape of a
performed gesture also fits the ideal pattern.

After programming the gesture recognizers and testing them separately, we started test-
ing them at the same time within the framework, which would have to automatically
manage the disambiguation between the recognizers. We found compatibility problems
between our recognizer strategy and the framework’s own design, preventing successful
disambiguation from happening, requiring some additional recognizing steps or a slight
change on the strategy:

• In some cases the final part of one gesture could be recognized as the beginning of
another. This is the case, for instance for 4T and 3T, shown in Figure 5.23. Because
GestureAgents recognizers compete to have the exclusivity over the input events
as a mechanism of disambiguation, a recognizer cannot successfully recognize a
gesture until all other recognizers give up. This confusion, 3T recognizer trying to
identify a 3T gesture in the middle of a 4T gesture, delayed the the recognition
of the correct 4T gesture, preventing then the following gesture to be recognized
at all (because of missed input events caused by the delay). This string of half
failed recognitions has shown a flaw of GestureAgents when dealing with gestures
that appear in mid-interaction, in opposition to the gestures in Tabletops, usually
starting with the introduction of a new finger on the surface. We solved this
problem by segmenting the hand trace using a common start/end gesture feature
present on all the recognized gestures: the different vertical position.

• A related problem appeared with the concept of this type of gestures in Ges-

175

5 Multi-Application systems: GestureAgents

tureAgents: with our conducting gestures the last point of one gesture is also the
first point of another. This, sharing input events between recognizers, is strictly
forbidden by GestureAgents. We changed the segmentation code to repeat the
same event at the end and beginning of the following segments to be able to feed
different recognizers.

• Several other bugs of GestureAgents were fixed during the implementation. Most
of them were simply errors never caught in a tabletop setup, as most of its gestures
always start with the introduction of a new interaction Agent, instead of appearing
inside an already started interaction trace.

• Also, using recognizer composition (defining a gesture in terms of another one)
for segmentation prevented the gestures to compete due to the gesture isolation
strategy created by GestureAgents to allow gestures from different programs to
compete regardless of its composition (see Section 5.8). It seems clear that this
strategy is problematic in this context, and does not always allow having com-
position inside the gesture isolation. We faced this problem by extracting the
segmentation from the gesture recognizer category and treating it like a sensor (a
recognizer that is used as a primary means of interaction events). Another possi-
ble solution would have been implementing the segmentation inside the recognizer
avoiding composition altogether.

After resolving the aforementioned issues, the final implementation works well and iden-
tifies all the gestures that adhere to the definition from the recording.

Testing

For the ease of testing we implemented an alternative input method based on Leap
Motion6, a depth sensor designed to capture hand and tool movement, instead of full
body. This implementation allows rapid testing without having to set up a full-body
Kinect scenario.

Informal testing shows that it is possible to recognize correct gestures in real time.

5.10 GestureAgents Code

The GestureAgents framework is open source and available to anyone for use and im-
prove. The code can be found in the following repository: https://bitbucket.org/chaosct/gesture-

6https://www.leapmotion.com/product

176

https://bitbucket.org/chaosct/gesture-agents
https://bitbucket.org/chaosct/gesture-agents
https://www.leapmotion.com/product
https://bitbucket.org/chaosct/gesture-agents
https://bitbucket.org/chaosct/gesture-agents

5.11 Discussion on the framework

agents, and videos of some of the examples can be found at http://carles.fjulia.name/gestureagentsvideos.

The resulting algorithm for the second iteration can be found at the original Ges-
tureAgents git repository, in the branch composition2.

5.11 Discussion on the framework

The GestureAgents approach to provide multi-tasking to shareable interfaces is still
in a prototype stage and can primarily serve as a starting point to explore this type
of application-centric distributed gesture recognition strategy. This means that many
aspects regarding the real world usage of such mechanism are still to be explored and
discussed in depth.

5.11.1 Accessory agents

Sometimes an agent can be related to a gesture, but only as a reference. For instance,
while doing a circle around a puck, the object can be accessory but not core to the
gesture, therefore it will not be governed by the rule of gesture exclusivity and can
be shared by several gestures at the same time: imagine that a gesture that links two
objects is performed at the same time as the object-circling gesture referenced above.
Both gestures can have a single object as a reference point and yet not be exclusive to
each other.

How to solve this kind of gesture conflicts is an open question. One possible approach
could be implementing the gesture recognizer in a way that the accessory agent is ac-
quired but never confirmed; thus temporarily blocking its use as a core part of another
gesture but being able to be shared with other gestures as an accessory agent. This ap-
proach could surely work in the first version of GestureAgents, but the changes created
in the second iteration isolating the gestures by the use of proxies (see Section 5.8) makes
this strategy impossible. So an explicit solution in the foundations of GestureAgents can
be needed.

5.11.2 Temporary Feedback

As the framework has no standard set of gestures and the applications do not receive
events until the disambiguation is complete, it is unclear how to implement temporary
feedback to the user while a gesture is still not defined. Several approaches are possible,

177

https://bitbucket.org/chaosct/gesture-agents
https://bitbucket.org/chaosct/gesture-agents
https://bitbucket.org/chaosct/gesture-agents
http://carles.fjulia.name/gestureagentsvideos

5 Multi-Application systems: GestureAgents

but we must find the most flexible one. As the application is responsible for the feed-
back, yet the information about the hypothetical gesture is only in the recognizer (and
potentially duplicated across hypotheses in several recognizers), a way to bridge it to
the application is needed until a single gesture can be clearly identified and executed.

Defining a new kind of event that can be sent from the gesture recognizer to the appli-
cation (through the AppRecognizer), representing only temporary unconfirmed data to
display, could be a way of solving this problem, although how to present such amount
of possible gestures being recognized is unclear.

5.11.3 Supporting Other Gesture Recognizing Techniques

One of the key aspects of GestureAgents is the separation of gesture recognition from dis-
ambiguation, in a fashion that they are theoretically independent, as long as some rules
are complied. It would be interesting to implement other gesture recognition algorithms
that complied with the protocol.

Domain specific languages and machine learning techniques such as the ones presented in
Section 5.5.1 could be a perfect fit, as their intention is to ease the gesture programming.
Also, gesture reusability between those systems and GestureAgents could be very useful.

5.11.4 Security

A typical concern of such system could be its resilience against ill-behaved programs.
An application that unintentionally grabs input events without releasing them, could
effectively block all other programs from receiving the exclusivity over the agents to
fully recognize their gestures, unless specific policies preventing or limiting this type of
behavior were implemented.

Even malware could register similar or identical gestures to the ones from legit programs,
in order to steal those to insert its malicious content. Again, careful policies would have
to be designed to limit this kind of attacks, such as using proximity to areas to prioritize
conflicting gestures. However, the experience with PC malware tells us that it is very
difficult to be protected from malicious applications.

Another security-related concern is whether an application could steal secrets from our
interaction with other programs. As in GestureAgents every process can receive all
input information to check if it fits a particular gesture, it is sensible to think that key-
logger-like applications could be effectively developed. Being the situation similar to the
PC’s in this case, we can learn from its implemented strategies to solve that particular

178

5.11 Discussion on the framework

problem. Some operating systems implement a way to interact with a specific dialog
that is isolated from all the other processes, in order to enter a password or to confirm
an action that requires specific privileges. A possible solution in GestureAgents could
be based on this same idea.

5.11.5 Efficiency

Other issues related to efficiency could be relevant. The GestureAgents strategy simply
distributes the events to the applications, leaving the recognition to them. In this per-
spective, it does not pose any relevant computing burden. Additionally, the restrictions
imposed on the recognizers’ behavior favors incremental gesture recognition approaches,
which are computationally cheap. In fact, the informal experience through the different
exposed tests and demos, does not clearly reveal any perceptually relevant impact by
GestureAgents.

That said, in current systems, input events are either processed in a central engine before
distributing them to the applications, or are filtered by area (or by focus point) before
being processed inside the application. In GestureAgents many applications can be
processing the same events at the same time, multiplying the needed processing power.
At least with the current implementation, this effect seems inevitable.

Existing centralized gesture recognition engines that recognize several hypothetical ges-
tures simultaneously are making efforts to parallelize this processing while guaranteeing
soft real-time (Marr et al., 2014). In GestureAgents the processing of gestures in dif-
ferent applications would be done in parallel by definition, although without real-time
guarantees.

Overall, we think that the identification of the problem of the lack and need of multi-
user concurrent multitasking, and our approach to the solution contribute to the current
state of the art. By proposing a content-based disambiguation instead of an area-based
one, GestureAgents approach can be a valid solution for multi-tasking, in both coupled
and decoupled shareable interfaces, revealing itself as a generic solution. This can be in-
creasingly relevant for new upcoming decoupled interfaces such as hand tracking sensors
or depth cameras, which could benefit from policies and strategies developed for other
more popular interfaces.

179

5 Multi-Application systems: GestureAgents

5.11.6 Debugging and Testing

The event-driven nature of GestureAgents as a whole, and particularly the diversity of
places where the decision of failing a particular recognizer can be failed, make debugging
it very difficult: The program flow is not linear, as some events are buffered for later
use, expecting some of the consequences of actions to be effective before others.

When something was not working properly, the only way to inspect what was happening
was saving long logs to be inspected later showing the execution flow, which made no
particular sense. We would say that this is the biggest challenge of GestureAgents:
making it debugging-friendly, clarifying the execution so it can be inspected.

A visual display of the running gesture recognizers around the related agents on the
surfaces was actually implemented, but the great volatility of new recognizers instances
as hypotheses made it of little use to visually understand what was happening.

To implement the second iteration, we felt that only structured testing could be of any
help to understand if we were actually breaking something. We found that programmatic
gesture testing can be a very valuable resource for testing the completeness of this kind
of solution, more than user testing, as the main reason for testing in this case is the
correctness of the algorithm.

A public repository of interaction recordings for testing gesture recognizers could be very
useful for testing implementations between systems. This could be a very useful work
to be done by and for the community.

5.11.7 Considerations on the second iteration

The original GestureAgents framework had some defects that affected its main goal. We
analyzed these in order to identify their cause, finally tuning the algorithm to solve them
(Section 5.8).

It seems clear that agent exclusivity algorithm can only work with single-level recognizers,
independently of them having sub-trees, as we implemented as a solution. We think that
this is an important finding, as it sets the limits of this method.

Although we introduced a solution that solves that case, it is not a major change on the
philosophical sense, neither it fundamentally changes the components of the algorithm,
and thus we can still benefit from its original properties. The top-level algorithm is now
clearer, easier to understand and manage, while we keep the more complex interaction
between recognizers as an option hidden to it.

180

5.11 Discussion on the framework

However, it has made the internal organization of classes and program flow of the im-
plementation very difficult to understand. By making it backwards-compatible, the new
version has generated multiple classes and functions whose sole purpose is hiding the
real complexity of the new system and pretending to be the old one.

5.11.8 Considerations on decoupled interfaces

The experience of using GestureAgents to build gesture recognizers for a decoupled
interface, described in Section 5.9.3 revealed us some problems.
Despite being created as generic as possible, GestureAgents was developed and tested
basically in tabletops. This means that some assumptions were remained hidden until a
different approach was used.
The main assumption that was inserted into GestureAgents that unconsciously limits its
potential use with decoupled interfaces, is that gestures usually start with the appearance
of an agent. In a tabletop that would be, for instance, touching the interface. It is
totally reasonable to think that, in interfaces where the users have an implicit or explicit
mechanism to signal the beginning of a gesture, they will use it; and the appearance of
a new agent detected by the sensors is a very evident way to signal it.
However, interfaces like the ones using full body interaction do not provide this capability
of distinguishing whether the sensors start to detect something. Instead, gestures may
occur at any time. The fact that gesture recognizers are typically interested by new
agents, and because of that acquiring an agent and generating a new hypothesis is
typically done then, rises the question of what to do when the starting point of a gesture
is not known immediately. If we create a new hypothesis for every new movement event,
would it be possible to handle that amount of recognizers?
The fact is that GestureAgents was designed so the only gesture generation event could
be the introduction of a new (or recycled) event. If that is not the case, the continuous
appearing of new recognizers interested on the agent will prevent the right recognizer
to ever get its exclusivity. In the presented example that was mitigated with the seg-
mentation recognizer that detected key points of the movement where new recognizers
could appear. However, as exposed, the segmentation had to be placed outside the Ap-
pRecognizer infrastructure created for the second iteration (Section 5.8), because of the
same assumptions.
But the problem is still there: disambiguation lag could affect future gesture recognizers
trying to get exclusivity to a legitimate gesture. As in this case that the gestures would
be chained following one to another, not successfully recognizing the gesture at the time

181

5 Multi-Application systems: GestureAgents

Current

Gesture A Gesture B

FailFail

confirm

RA
RC RB

Gesture A Gesture Bconfirm

RA

FailRC
RB

Ideal

Figure 5.24: Disambiguation delay can prevent consequent gestures from being recog-
nized. In a stream of events, two consecutive gestures exist (A and B).
Gestures recognizers RA and RB try to recognize their correspondent ges-
tures (A,B), while recognizer RC is still deciding if its gesture matches the
events. Notice how the competition between RA and RC prevents RB from
recognizing gesture B (Current situation, above). A an ideal implementa-
tion should allow RB to use the events from gesture B that were temporarily
blocked by RC.

of the gesture ending would prevent the next recognizers from finding an agent in a clean
state, and this would prevent the previous recognizer to ever get its exclusivity, which
at its turn would do the same to the next one.

The fact is that disambiguation delay happening at the end of the gesture prevents the
next ones to use the agent, even if the original recognizers are no longer interested on
its events (see Figure 5.24 for an illustration).

Taking this case into account would require a major reformulation of GestureAgents:
instead of acquiring agents for a time period, recognizers would have to acquire sequences
of events, where they can confirm their gesture while leaving the next events free to use
by other recognizers.

In short, focusing on sequences of events instead of on agents.

182

5.12 Conclusions

5.11.9 Future steps

When creating GestureAgents, we started with an idea that changed and grew over
time, and its implementation reflects that. The lessons learned in the process, the final
design of the elements and their interaction are now sufficiently complete to think about
reimplementing it from scratch.

Given the discovered limitations, we think that a major rewrite of GestureAgents from
the learned lessons, focusing on the protocol first, with a real network protocol in place,
could be a good start. The mentioned problems could be addressed in the design before
starting the implementation so they do not complicate things by trying to maintain a
backwards-compatible system.

5.12 Conclusions

What started with the attempted solution to the problems identified in ofxTableGes-
tures regarding simultaneous gestures and composition, developed into a much broader
solution to a problem that shared some characteristics with the original one.

We have identified and exposed the need of multi-tasking capabilities in shareable multi-
user interfaces. We have argued about the utility of multi-tasking when solving complex
tasks with computers, and showed that multi-tasking features are currently missing in
actual shareable interfaces, despite the fact that one of their main goals is complex task
solving through collaboration between users.

We argue that this lack is not unintentional but a consequence of the difficulty of adapting
current multi-tasking-capable systems into shareable interfaces.

An analysis of the complexities of implementing such a system together with a dis-
cussion of possible strategies has been carried, revealing that “area-based input events
distribution” or “gesture language definition-based” approaches may pose problems in
the context of rich interaction and decoupled interfaces. A third approach, using a proto-
col to control input event distribution but leaving gesture recognition to the application
has been described and considered as the best choice.

An implementation of this approach, GestureAgents, has been presented as a possible
solution, which implements the third of these strategies.

Examples of use of the framework have been finally presented, showing some of the
possibilities of multi-user multi-tasking interaction and the potential of the framework
itself, as well as its limitations, also analyzed.

183

5 Multi-Application systems: GestureAgents

We still feel that this exposed problem is relevant, and will be increasingly so. The
appearance of new decoupled interfaces, such as Leap Motion, will require to distribute
their events to the applications, not only based in their focus, but also in the gesture
itself. We think this approach will be valuable for them.

184

6 Conclusions

We began this thesis with an example of a computing device, the tablet PC, the widespread
adoption of which was delayed by many years because of a bad start. Despite the many
capacities and advantages of these devices, a series of wrong decisions (or a precipitation
on the commercialization) prevented them from becoming useful to widespread users.

Tangible tabletop technology has been ready for some years now, but the predicted
widespread adoption is still pending. As researchers, we should also analyze the case of
this poor adoption, to prevent it from having a worst fate to that of the first tablet PCs
(by not having a second chance).

We have seen that tangible tabletops can be extremely useful. Their distinctive charac-
teristics can actually contribute to making some tasks easier and other tasks possible;
their collaboration facilities can ease problem-solving processes requiring many points
of view, task parallelization or control sharing; they can help the thinking process with
rich gestures, kinesthetic memory, epistemic actions, physical constrains or tangible rep-
resentations of a problem; and their vast screen promotes screen multiplexing, complex
visualization and monitoring, by enhancing the output bandwidth.

We presented and described two examples of tabletop applications that tried to take ad-
vantage of these capabilities, TurTan and SongExplorer, showing the potential of such
devices. TurTan shows how a structured activity such as programming can be easier
when it is made tangible, and with real-time visualization, and how this same tangibil-
ity can impact the learning process in education. SongExplorer shows how collection
browsing and map navigation abilities can be used by tabletops to help solving problems
involving massive data.

Using our own experiences from building tangible tabletop systems, and from teaching
and supporting students in building such systems, we realized the need of programming
frameworks adapted to these devices, helping programmers with difficult or repetitive
tasks, but also enforcing good design and programming strategies. To cover this need
we created two frameworks, ofxTableGestures and MTCF, addressing two different col-
lectives: programmers and art and music students, respectively.

185

6 Conclusions

The process of building and enhancing these frameworks, driven by the needs of new
students every year, allowed us to identify the activities they struggled with the most
and addressing them. As seen in the current literature, creating gesture recognizers is
one of the parts that definitely profits the most from framework infrastructure.

A broader analysis of the tabletop application scene gives us the hint that multitasking,
an important factor for complex task solving, is missing in tabletop systems. We ana-
lyzed how the combination of multitasking and multi-user interaction poses a challenge
on the distribution of the input events of the system. This problem, which in our opinion
caused the lack of multitasking in tabletops, is also relevant in other kinds of shareable
interfaces. To solve it, we proposed GestureAgents, a context-based but application
centric framework for gesture disambiguation in concurrent multitasking multi-user sys-
tems. We do not propose it as a definitive software solution, but mainly as a proof of
concept in order to design a blueprint. We tested it in several contexts and we showed
its flaws, which need to be addressed in order to build an uncoupled interface compatible
framework.

6.1 Contributions

Along the path of Making Tabletops Useful we have made several contributions. Some
of them are original in this document, others have already been published in the form
of academic papers (see Appendix A) and others in the form of software. We briefly list
some of the main contributions below.

Published Contributions

• With TurTan we contributed by exploring how to adapt programming (and specif-
ically tangible programming) for a tangible tabletop device so it could exploit the
alleged creativity-stimulator traits.

• SongExplorer’s contribution was to adapt a general problem; interesting music
finding in large databases, by exploiting the tabletops’ capacity of exploratory
interaction.

• Musical Tabletop Coding Framework contributed a novel way to have direct pro-
totyping for sound and music tabletop applications.

• GestureAgents framework contributed to explore the novel problem of gesture dis-
ambiguation in multi-user concurrent multi-tasking systems.

186

6.2 Future Work

Original Contributions

• We contributed to understand how learning activities could be affected by using
tangible versions of tools such as Logo (TurTan).

• We analyzed the impact of collection ordering in the interesting music finding
process of SongExplorer.

• We explored the typical interaction design strategies which emerged in a tabletop
application creation course (TSI).

• We exposed how a second iteration of GestureAgents solved an incompatibility
between the composition strategy and the disambiguation mechanism.

Software Contributions

• ofxTableGestures framework was developed to help tabletop application program-
mers to create applications that could exploit the distinctive tabletop characteris-
tics. It is open source, available and currently used.

• Musical Tabletop Coding Framework had a goal to support sound and music artists
to create tabletop versions of their projects. It is also open source, available and
currently used.

• GestureAgents framework, which is in a more experimental stage, addressing the
problem of gesture disambiguation in a distributed application-centric fashion is
also open source and available.

• Neither TurTan nor SongExplorer are currently available to the public, due to the
lack of efficient distribution mechanisms for tabletop applications.

6.2 Future Work

We have just opened the discussion on multi-user concurrent multitasking in shareable
interfaces, and the community has to join this discussion and contribute with different
solutions and strategies, before settling for a final approach. Even if the identified flaws
in GestureAgents are addressed, it is probably still one of the many possible approaches.

The GestureAgents framework itself needs to be re-built. We can profit from the expe-
rience, the developed strategies and the architecture, but a clear implementation, using
the final design, with a real-world focus, is still needed.

187

6 Conclusions

The presented application frameworks are in continuous evolution, and in spite of being
single-task oriented, are still necessary at this moment. No major changes are planned,
yet.

We can only ask that we (the research community) solve those issues in future, because
all the research done on tabletops will only be useful at the end when people use them.

May be the next breakthroughs in science and technology are made with the mediation
of tabletops, thanks to their unique paradigm-changing capabilities. It would be a shame
if we deprive humanity of these tools.

188

Bibliography

Harold Abelson and Andrea A Di Sessa. Turtle geometry: The computer as a medium
for exploring mathematics. the MIT Press, 1986. 3.5

Christopher James Ackad, Anthony Collins, and Judy Kay. Switch: exploring the design
of application and configuration switching at tabletops. In ACM International Confer-
ence on Interactive Tabletops and Surfaces - ITS ’10, page 95, New York, New York,
USA, nov 2010. ACM Press. ISBN 9781450303996. doi: 10.1145/1936652.1936670.
5.3, 5.4.1

Edith K Ackermann. Constructing knowledge and transforming the world. In A learning
zone of one’s own: Sharing representations and flow in collaborative learning environ-
ments, chapter 2. IOS Press, 2004. 3.5.1

Iyad AlAgha, Andrew Hatch, Linxiao Ma, and Liz Burd. Towards a teacher-centric
approach for multi-touch surfaces in classrooms. In ACM International Conference on
Interactive Tabletops and Surfaces - ITS ’10, page 187, New York, New York, USA,
nov 2010. ACM Press. ISBN 9781450303996. doi: 10.1145/1936652.1936688. 5.3, 5.4.1

William Albert and Thomas Tullis. Measuring the User Experience: Collecting, Analyz-
ing, and Presenting Usability Metrics. Morgan Kaufmann Publishers Inc., 2008. ISBN
0124157920. 3.5.5, 3.5.5

Daniel Arfib and Loïc Kessous. Gestural control of sound synthesis and processing
algorithms. In Gesture and Sign Language in Human-Computer Interaction, pages
285–295. Springer, 2002. ISBN 3540436782. 2.3

Till Ballendat, Nicolai Marquardt, and Saul Greenberg. Proxemic interaction. In ACM
International Conference on Interactive Tabletops and Surfaces - ITS ’10, page 121,
New York, New York, USA, nov 2010. ACM Press. ISBN 9781450303996. doi: 10.
1145/1936652.1936676. 5.3

Liam J Bannon. Cscw: An initial exploration1. Scandinavian Journal of Information
Systems, 5:3–24, 1993. 3.1.2

Gary Beauchamp. Teacher use of the interactive whiteboard in primary schools: towards

189

Bibliography

an effective transition framework. Technology, Pedagogy and Education, 13(3):327–
348, oct 2004. ISSN 1475-939X. doi: 10.1080/14759390400200186. 5.3

James Begole, Mary Beth Rosson, and Clifford A. Shaffer. Flexible collaboration trans-
parency: supporting worker independence in replicated application-sharing systems.
ACM Transactions on Computer-Human Interaction, 6(2):95–132, jun 1999. ISSN
10730516. doi: 10.1145/319091.319096. 3.1.2

E. Ben-Joseph, Hiroshi Ishii, John Underkoffler, B. Piper, and L. Yeung. Urban sim-
ulation and the luminous planning table: Bridging the gap between the digital and
the tangible. Journal of Planning Education and Research, 21(2):196–203, dec 2001.
ISSN 0739-456X. doi: 10.1177/0739456X0102100207. 2.4.1

Ross Bencina, Martin Kaltenbrunner, and Sergi Jorda. Improved topological fiducial
tracking in the reactivision system. 2005. 3.2, 3.4, 4.1.1

Sakari Bergen. Conductor Follower: Controlling sample-based synthesis with expressive
gestural input. PhD thesis, 2012. 5.9.3

Eric A. Bier, Maureen C. Stone, K. Pier, and William A. S. Buxton. Toolglass and
magic lenses: The see-through interface. In Siggraph’93, 1993. 2.3, 2.4

Durrell Bishop. Visualising and physicalising the intangible product. In Proceedings of
the 3rd International Conference on Tangible and Embedded Interaction - TEI ’09,
page 1, New York, New York, USA, feb 2009. ACM Press. ISBN 9781605584935. doi:
10.1145/1517664.1517667. 2.4

Alan F Blackwell. The reification of metaphor as a design tool. ACM Transactions
on Computer-Human Interaction, 13(4):490–530, dec 2006. ISSN 10730516. doi: 10.
1145/1188816.1188820. 2.2, 2.2.1

Muriel Bowie, Oliver Schmid, Agnes Lisowska Masson, and Béat Hirsbrunner. Web-
based multipointer interaction on shared displays. In Proceedings of the ACM 2011
conference on Computer supported cooperative work - CSCW ’11, page 609, New York,
New York, USA, 2011. ACM Press. ISBN 9781450305563. doi: 10.1145/1958824.
1958926. 5.2

N. Brosterman and K. Togashi. Inventing kindergarten. Harry N. Abrams, 1997. 3.5.1

J Bruner. Theory of Instruction. Harvard University Press, Cambridge, Mass., 1966.
3.5.1

William A. S. Buxton. Living in augmented reality: Ubiquitous media and reactive
environments. Video Mediated Communication, pages 363–384, 1997. 2.4.1

190

Bibliography

William A. S. Buxton and B. Myers. A study in two-handed input. ACM SIGCHI
Bulletin, 17(4):321–326, apr 1986. ISSN 07366906. doi: 10.1145/22339.22390. 2.3

Baptiste Caramiaux and Atau Tanaka. Machine learning of musical gestures. In Proc.
of NIME 2013, 2013. 5.4.4, 5.5.1

Baptiste Caramiaux, Frédéric Bevilacqua, Bruno Zamborlin, and Norbert Schnell. Mim-
icking sound with gesture as interaction paradigm. Technical report, IRCAM - Centre
Pompidou, Paris, France, 2010. 5.5.3

Alejandro Catalá, Javier Jaen, Betsy van Dijk, and Sergi Jordà. Exploring tabletops as
an effective tool to foster creativity traits. In Proceedings of the Sixth International
Conference on Tangible, Embedded and Embodied Interaction - TEI ’12, volume 1,
page 143, New York, New York, USA, feb 2012. ACM Press. ISBN 9781450311748.
2.5, 3.1.3, 5.2

Òscar Celma. Music Recommendation and Discovery: The Long Tail, Long Fail, and
Long Play in the Digital Music Space. Springer, 2010. ISBN 3642132871. 3.6

J Chowning. The synthesis of complex audio spectra by means of frequency modulation.
Journal of the Audio Engineering Society, 21(7):526–534, 1973. 4.2.1

Andy Crabtree, Tom Rodden, and John Mariani. Collaborating around collections. In
Proceedings of the 2004 ACM conference on Computer supported cooperative work -
CSCW ’04, page 396, New York, New York, USA, nov 2004. ACM Press. ISBN
1581138105. doi: 10.1145/1031607.1031673. 3.1.2

Mark Danks. Real-time image and video processing in gem. In ICMC97, 1997. 4.2.2

Alessandro De Nardi. Grafiti-gesture recognition management framework for interactive
tabletop interfaces, 2008. 5.5.1, 5.5.3

Paul Dietz and Darren Leigh. Diamondtouch: A multi-user touch technology. In Anual
ACM Symposium on User Interface Software and Technology UIST, pages 219–226,
Orlando, 2001. 3.2

Pedro Domingos. A few useful things to know about machine learning. Communications
of the ACM, 55(10):78, oct 2012. ISSN 00010782. doi: 10.1145/2347736.2347755. 5.5.1

Nicolas Earnshaw. Evaluating an agent-based gesture recognizing framework. PhD thesis,
Universitat Pompeu Fabra, 2012. 5.9.1

Florian Echtler and Andreas Butz. Gispl. In Proceedings of the Sixth International
Conference on Tangible, Embedded and Embodied Interaction - TEI ’12, page 233,
New York, New York, USA, feb 2012. ACM Press. ISBN 9781450311748. doi: 10.
1145/2148131.2148181. 5.4.4, 5.5.1, 5.8.3

191

Bibliography

Florian Echtler, Gudrun Klinker, and Andreas Butz. Towards a unified gesture de-
scription language. In HC’10, pages 177–182, Aizu-Wakamatsu, Japan, dec 2010.
University of Aizu Press. 5.5.1

John Greer Elias, Wayne Carl Westerman, and Myra Mary Haggerty. Multi-touch ges-
ture dictionary, nov 2007. 5.4.3

Clarence A. Ellis and Simon J. Gibbs. Concurrency control in groupware systems. In
ACM SIGMOD Record, volume 18, pages 399–407, jun 1989. doi: 10.1145/66926.
66963. 5.2

Douglas C. Engelbart and William K. English. A research center for augmenting human
intellect. In Proceedings of the December 9-11, 1968, fall joint computer conference,
part I on - AFIPS ’68 (Fall, part I), page 395, New York, New York, USA, dec 1968.
ACM Press. doi: 10.1145/1476589.1476645. 2.3

Ylva Fernaeus and Jakob Tholander. Finding design qualities in a tangible programming
space. In Proceedings of the SIGCHI conference on Human Factors in computing
systems - CHI ’06, page 447, New York, New York, USA, apr 2006. ACM Press.
ISBN 1595933727. doi: 10.1145/1124772.1124839. 3.1.2

Ylva Fernaeus, Jakob Tholander, and Martin Jonsson. Beyond representations: towards
an action-centric perspective on tangible interaction. International Journal of Arts
and Technology, 1(3/4):249–267, 2008. ISSN 17548853. 3.1.2

Wally Feurzeig, Seymour Papert, M Bloom, R Grant, and Cynthia J. Solomon.
Programming-languages as a conceptual framework for teaching mathematics. final
report on the first fifteen months of the logo project. nov 1969. 3.5, 3.5.1

Rebecca Anne Fiebrink. Real-time human interaction with supervised learning algorithms
for music composition and performance. PhD thesis, Princeton University, 2011. 5.5.1

Kenneth P. Fishkin. A taxonomy for and analysis of tangible interfaces. Personal
and Ubiquitous Computing, 8(5):347–358, 2004. ISSN 1617-4909. doi: 10.1007/
s00779-004-0297-4. 5.4.1

George W. Fitzmaurice. Graspable user interfaces. jan 1996. 3.1.1, 3.1.3, 5.2

George W. Fitzmaurice, Hiroshi Ishii, and William A. S. Buxton. Bricks: laying the
foundations for graspable user interfaces. In Proceedings of the SIGCHI conference on
Human factors in computing systems, page 442. ACM Press/Addison-Wesley Publish-
ing Co., 1995. 2.4, 2.1, 3.1.1, 5.5.1

Lawrence Fyfe, Sean Lynch, Carmen Hull, and Sheelagh Carpendale. Surfacemusic:
Mapping virtual touch-based instruments to physical models. In Proceedings of the

192

Bibliography

2010 conference on New interfaces for musical expression, pages 360–363. Sydney,
Australia, 2010. 4.2

Ombretta Gaggi and Marco Regazzo. An environment for fast development of tabletop
applications. In Proceedings of the 2013 ACM international conference on Interactive
tabletops and surfaces - ITS ’13, pages 413–416, New York, New York, USA, oct 2013.
ACM Press. ISBN 9781450322713. doi: 10.1145/2512349.2514917. 5.3, 5.4.1

Daniel Gallardo, Carles F. Julià, and Sergi Jordà. Turtan: A tangible programming
language for creative exploration. In 3rd IEEE International Workshop on Horizontal
Interactive Human Computer Systems, 2008. TABLETOP 2008, pages 89–92. Ieee,
IEEE, oct 2008. ISBN 978-1-4244-2897-7. doi: 10.1109/TABLETOP.2008.4660189.
3.5, 5.5.1

William W. Gaver, John Bowers, Andrew Boucher, Hans Gellerson, Sarah Pennington,
Albrecht Schmidt, Anthony Steed, Nicholas Villars, and Brendan Walker. The drift
table. In Extended abstracts of the 2004 conference on Human factors and computing
systems - CHI ’04, page 885, New York, New York, USA, apr 2004. ACM Press. ISBN
1581137036. doi: 10.1145/985921.985947. 3.1.2

G Geiger and N Alber. The reactable: A collaborative musical instrument for playing
and understanding music. Her&Mus: heritage & . . . , 2010. 3.5.4

James J. Gibson. The theory of affordances. In R. E. Shaw & J. Bransford, editor,
Perceiving, Acting, and Knowing. Lawrence Erlbaum Associates, Hilldale, USA, 1977.
2.1

Emilia Gómez, Maarten Grachten, Alan Hanjalic, Jordi Janer, Sergi Jorda, Carles F.
Julià, Cynthia Liem, Agustin Martorell, Markus Schedl, and Gerhard Widmer.
Phenicx: Performances as highly enriched and interactive concert experiences. Open
access, 2013. 5.9.3

Masataka Goto and Takayuki Goto. Musicream: New music playback interface for
streaming, sticking, sorting, and recalling musical pieces. In ISMIR’05, pages 404–
411, 2005. 3.6.1, 3.22

Jefferson Y. Han. Low-cost multi-touch sensing through frustrated total internal reflec-
tion. In Proceedings of the 18th annual ACM symposium on User interface software
and technology - UIST ’05, page 115, New York, New York, USA, oct 2005. ACM
Press. ISBN 1595932712. doi: 10.1145/1095034.1095054. 2.4.1

Jefferson Y. Han. Multi-touch interaction wall. ACM SIGGRAPH 2006 Emerging tech-
nologies on - SIGGRAPH ’06, page 25, 2006. doi: 10.1145/1179133.1179159. 3.6

Thomas E. TE Hansen, JP Juan Pablo Hourcade, Mathieu Virbel, Sharath Patali, and

193

Bibliography

Tiago Serra. Pymt: a post-wimp multi-touch user interface toolkit. Proceedings of the
ACM . . . , 2009. 5.5.1

Don Hatfield. The coming world of "what you see is what you get". In CHI’81, volume 13,
page 138, New York, NY, USA, jan 1981. ACM. ISBN 0-89791-064-8. doi: 10.1145/
1015579.810978. 2.2.2

Ken Hinckley, Randy Pausch, John C. Goble, and Neal F. Kassell. Passive real-world
interface props for neurosurgical visualization. Conference on Human Factors in Com-
puting Systems, page 452, 1994. 2.3

Ken Hinckley, Randy Pausch, Dennis Proffitt, and Neal F. Kassell. Two-handed virtual
manipulation. ACM Transactions on Computer-Human Interaction, 5(3):260–302, sep
1998. ISSN 10730516. doi: 10.1145/292834.292849. 2.3

Stephen Hitchner, J. Murdoch, and G. Tzanetakis. Music browsing using a tabletop
display. In 8th International Conference on Music Information Retrieval. Citeseer,
2007. 3.6.1

Jordan Hochenbaum, Owen Vallis, Dimitri Diakopulos, Jim Murphy, and Ajay Kapuy.
Designing expressive musical interfaces for tabletop surfaces. In Proceedings of the
2010 conference on New interfaces for musical expression, pages 315–318. Sydney,
Australia, 2010. 4.2

Steve Hodges, Shahram Izadi, Alex Butler, Alban Rrustemi, and Bill Buxton. Thinsight:
versatile multi-touch sensing for thin form-factor displays. In Proceedings of the 20th
annual ACM symposium on User interface software and technology - UIST ’07, page
259, New York, New York, USA, oct 2007. ACM Press. ISBN 9781595936792. doi:
10.1145/1294211.1294258. 2.5

Lars Erik Holmquist, Johan Redström, and Peter Ljungstrand. Token-based acces to
digital information. Lecture Notes In Computer Science, 1707:234–245, 1999. doi:
10.1007/3-540-48157-5_22. 3.1.3

Michael S Horn and Robert J K Jacob. Designing tangible programming languages
for classroom use. Proceedings of the 1st international conference on Tangible and
embedded interaction TEI 07, page 159, 2007. doi: 10.1145/1226969.1227003. 3.5.2

Michael S. Horn, Erin Treacy Solovey, R. Jordan Crouser, and Robert J.K. Jacob. Com-
paring the use of tangible and graphical programming languages for informal science
education. In Proceedings of the 27th international conference on Human factors in
computing systems - CHI 09, page 975, New York, New York, USA, apr 2009. ACM
Press. ISBN 9781605582467. doi: 10.1145/1518701.1518851. 3.5.2

Eva Hornecker and Jacob Buur. Getting a grip on tangible interaction: a framework

194

Bibliography

on physical space and social interaction. Proceedings of the SIGCHI conference on
Human, 2006. 2.5, 3.1.2, 5.2

Lode Hoste and Beat Signer. Criteria, challenges and opportunities for gesture program-
ming languages. In EGMI 2014, volume i, 2014. 5.5.1, 5.5.1

Steve Hotelling, Joshua A. Strickon, Brian Q. Huppi, Imran Chaudhri, Greg Christie,
Bas Ording, Duncan Robert Kerr, and Jonathan P. Ive. Gestures for touch sensitive
input devices, jul 2004. 5.4.3

Jörn Hurtienne, Christian Stöß el, and Katharina Weber. Sad is heavy and happy is
light. In Proceedings of the 3rd International Conference on Tangible and Embedded
Interaction - TEI ’09, page 61, New York, New York, USA, feb 2009. ACM Press.
ISBN 9781605584935. doi: 10.1145/1517664.1517686. 3.1.3

Peter Hutterer and Bruce H. Thomas. Groupware support in the windowing system. In
AUIC2007, 2007. 2.2.4, 5.3, 5.4.1

Peter Hutterer and Bruce H. Thomas. Enabling co-located ad-hoc collaboration on
shared displays. In 9th Australasian User Interface Conference (AUIC2008), pages
43–50, Wollongong, NSW, Australia, jan 2008. Australian Computer Society, Inc.
ISBN 978-1-920682-57-6. 5.4.1

Tommi Ilmonen. Tracking conductor of an orchestra using artificial neural networks.
Master’s thesis, Helsinki University of Technology, 1999. 5.9.3

Hiroshi Ishii and Brygg Ullmer. Tangible bits: towards seamless interfaces between
people, bits and atoms. Conference on Human Factors in Computing Systems, page
234, 1997. 2.4, 3.1

Shahram Izadi, Harry Brignull, Tom Rodden, Yvonne Rogers, and Mia Underwood. Dy-
namo: a public interactive surface supporting the cooperative sharing and exchange of
media. In Proceedings of the 16th annual ACM symposium on User interface software
and technology, pages 159–168, 2003. ISBN 1581136366. 2.2.4, 5.3

Sergi Jordà. Improvising with computers: A personal survey (1989-2001). Journal of
New Music Research, 31(1):1–10, mar 2002. ISSN 0929-8215. doi: 10.1076/jnmr.31.1.
1.8105. 2.3

Sergi Jordà. Sonigraphical instruments: from fmol to the reactable. In Proceedings of
the 2003 conference on New interfaces for musical expression, NIME ’03, pages 70–76,
Montreal, Canada, 2003. National University of Singapore. 3.1.3

Sergi Jordà. On stage: the reactable and other musical tangibles go real. International
Journal of Arts and Technology, 1(3/4):268–287, 2008. ISSN 17548853. 3.1.3, 3.4, 3.6,
5.3, 5.4.2

195

Bibliography

Sergi Jordà, Martin Kaltenbrunner, Günter Geiger, and Ross Bencina. The re-
actable*. In Proceedings of the International Computer Music Conference (ICMC
2005), Barcelona, Spain, pages 579–582, 2005. 3.2, 3.4, 5.4.2

Sergi Jordà, Günter Geiger, Marcos Alonso, and Martin Kaltenbrunner. The reactable:
exploring the synergy between live music performance and tabletop tangible inter-
faces. In Proceedings of the 1st international conference on Tangible and embedded
interaction, pages 139–146. ACM, 2007. 3.1.2, 3.1.2

Sergi Jordà, Carles F. Julià, and Daniel Gallardo. Interactive surfaces and tangibles.
XRDS: Crossroads, The ACM Magazine for Students, 16(4):21–28, 2010. ISSN 1528-
4972. 5.3

Carles F. Julià and Daniel Gallardo. Tdesktop : Disseny i implementació d’un sistema
gràfic tangible, 2007. 5.3, 5.4.3

Carles F. Julià and Sergi Jordà. Songexplorer: A tabletop application for exploring large
collections of songs. In ISMIR 2009, 2009. 3.6

Carles F. Julià, Daniel Gallardo, and Sergi Jordà. Mtcf: A framework for designing
and coding musical tabletop applications directly in pure data. In New Interfaces for
Musical Expression, 2011. 4.2

Carles F. Julià, Nicolas Earnshaw, and Sergi Jorda. Gestureagents: an agent-based
framework for concurrent multi-task multi-user interaction. In Proceedings of the
7th International Conference on Tangible, Embedded and Embodied Interaction, pages
207–214. ACM, 2013. 5.4.4

Paul Kabbash, William A. S. Buxton, and Abigail Sellen. Two-handed input in a com-
pound task. In CHI’94, 1994. 2.3, 2.4

Martin Kaltenbrunner, Günter Geiger, and Sergi Jordà. Dynamic patches for live musical
performance, 2004. 4.2.1

Martin Kaltenbrunner, Till Bovermann, Ross Bencina, and Enrico Costanza. Tuio - a
protocol for table based tangible user interfaces. In Proceedings of the 6th International
Workshop on Gesture in HumanComputer Interaction and Simulation GW 2005, pages
1–5, 2005. 3.4

Dietrich Kammer, Georg Freitag, Mandy Keck, and Markus Wacker. Taxonomy and
overview of multi-touch frameworks: Architecture, scope and features. Patterns for
Multi-Touch, 2010a. 5.5.3, 5.6.1, 5.6.2

Dietrich Kammer, Jan Wojdziak, Mandy Keck, Rainer Groh, and Severin Taranko.
Towards a formalization of multi-touch gestures. ACM International Conference on

196

Bibliography

Interactive Tabletops and Surfaces - ITS ’10, page 49, 2010b. doi: 10.1145/1936652.
1936662. 5.4.4, 5.5.1

K Karplus and A Strong. Digital synthesis of plucked-string and drum timbres. Computer
Music Journal, 7(2):43–55, 1983. ISSN 0148-9267. 4.2.1

Loïc Kessous and Daniel Arfib. Bimanuality in alternate musical instruments. pages
140–145, may 2003. 2.3

Shahedul Huq Khandkar and Frank Maurer. A domain specific language to define ges-
tures for multi-touch applications. In Proceedings of the 10th Workshop on Domain-
Specific Modeling - DSM ’10, page 1, New York, New York, USA, oct 2010. ACM
Press. ISBN 9781450305495. doi: 10.1145/2060329.2060339. 5.5.1

Henna Kim and Sara Snow. Collaboration on a large-scale, multi-touch display: asyn-
chronous interaction and multiple-input use. In CSCW’13, pages 165–168, 2013. ISBN
9781450313322. 5.3

J Kim, J Park, H K Kim, and C Lee. Hci (human computer interaction) using multi-touch
tabletop display. In IEEE Pacific Rim Conference on Communications, Computers
and Signal Processing, 2007. PacRim 2007, pages 391–394, 2007. 3.6.3

Kenrick Kin, Björn Hartmann, Tony DeRose, and Maneesh Agrawala. Proton: Multi-
touch gestures as regular expressions. In CHI 2012, 2012. ISBN 9781450310154. 5.4.4,
5.5.1, 5.5.1, 5.5.3

David Kirsh and Paul Maglio. On distinguishing epistemic from pragmatic ac-
tion. Cognitive Science, 18(4):513–549, oct 1994. ISSN 03640213. doi: 10.1207/
s15516709cog1804_1. 3.1.3

Peter Knees, Markus Schedl, Tim Pohle, and Gerhard Widmer. Exploring music collec-
tions in virtual landscapes. MultiMedia, IEEE, 14(3):46–54, 2007. ISSN 1070-986X.
3.6.1

T Kohonen. Self-Organizing Maps. Springer, 2001. 3.6.1, 3.6.3

Paul Kolesnik and Marcelo Wanderley. Recognition, analysis and performance with
expressive conducting gestures. In ICMC, 2004. 5.9.3

Anu Konttinen. Conducting Gestures: Institutional and Educational Construction of
Conductorship in Finland, 1973-1993. PhD thesis, 2008. 5.9.3

Myron W. Krueger, Thomas Gionfriddo, and Katrin Hinrichsen. Videoplace an artificial
reality. In CHI’85, volume 16, pages 35–40. ACM, apr 1985. ISBN 0-89791-149-0. doi:
10.1145/1165385.317463. 2.3, 5.4.1

197

Bibliography

Uwe Laufs, Christopher Ruff, and Jan Zibuschka. Mt4j-a cross-platform multi-touch
development framework. arXiv preprint arXiv:1012.0467, 2010. 5.5.1, 5.5.3

C Laurier, O Meyers, J Serrà, M Blech, and P Herrera. Music mood annotator design and
integration. In 7th International Workshop on Content-Based Multimedia Indexing,
Chania, Crete, Greece, 2009. 3.6.2, 3.6.3

Miguel Lechón. SongExplorer Studies. PhD thesis, Universitat Pompeu Fabra, 2010.
3.6.5

Henry F. Ledgard. Ten mini-languages: A study of topical issues in programming lan-
guages. ACM Computing Surveys, 3(3):115–146, sep 1971. ISSN 03600300. doi:
10.1145/356589.356592. 3.5

Hyun-Jean Lee, Hyungsin Kim, Gaurav Gupta, and Ali Mazalek. Wiiarts: Creating
collaborative art experience with wiiremote interaction. In Proceedings of the 2nd
international conference on Tangible and embedded interaction - TEI ’08, page 33,
New York, New York, USA, feb 2008. ACM Press. ISBN 9781605580043. doi: 10.
1145/1347390.1347400. 2.3

SK Lee, William A. S. Buxton, and K C Smith. A multi-touch three dimensional touch-
sensitive tablet. ACM SIGCHI Bulletin, 16(4):21–25, apr 1985. ISSN 07366906. doi:
10.1145/1165385.317461. 2.3

S. Leitich and M. Topf. Globe of music: Music library visualization using geosom. pages
167–170, 2007. 3.6.1, 3.6.3

Russell Mackenzie, Kirstie Hawkey, Kellogg S Booth, Zhangbo Liu, Presley Perswain,
and Sukhveer S Dhillon. Lacome: a multi-user collaboration system for shared large
displays. In CSCW’12, pages 267–268, 2012. ISBN 9781450310512. 5.3, 5.4.1

Milena Markova. TurTan Studies: Evaluation of the Impact of Tangible Interfaces on
Learning. PhD thesis, Universitat Pompeu Fabra, 2010. 3.5.5

Stefan Marr, Thierry Renaux, Lode Hoste, and Wolfgang De Meuter. Parallel gesture
recognition with soft real-time guarantees. Science of Computer Programming, feb
2014. ISSN 01676423. doi: 10.1016/j.scico.2014.02.012. 5.11.5

Paul Marshall. Do tangible interfaces enhance learning? In Proceedings of the 1st
international conference on Tangible and embedded interaction - TEI ’07, pages 163–
170, New York, New York, USA, 2007. ACM Press. ISBN 9781595936196. doi: 10.
1145/1226969.1227004. 3.3, 3.5.1

Paul Marshall, Yvonne Rogers, and Eva Hornecker. Are tangible interfaces really any
better than other kinds of interfaces? In CHI’07 workshop on Tangible User Interfaces
in Context and Theory, San Jose, Californa, USA, 2007. 3.1, 3.1.2

198

Bibliography

Maria Montessori. The montessori method. Frederick A. Stokes Co., 1912. 3.5.1

Meredith Ringel Morris, A.J. Bernheim Brush, and Brian R. Meyers. A field study of
knowledge workers’ use of interactive horizontal displays. In 2008 3rd IEEE Interna-
tional Workshop on Horizontal Interactive Human Computer Systems, pages 105–112.
IEEE, oct 2008. ISBN 978-1-4244-2897-7. doi: 10.1109/TABLETOP.2008.4660192.
2.4.1

Christian Muller-Tomfelde, Anja Wessels, and Claudia Schremmer. Tilted tabletops: In
between horizontal and vertical workspaces. In 2008 3rd IEEE International Workshop
on Horizontal Interactive Human Computer Systems, pages 49–56. IEEE, oct 2008.
ISBN 978-1-4244-2897-7. doi: 10.1109/TABLETOP.2008.4660183. 2.4.1

J Noble. Programming Interactivity: A Designer’s Guide to Processing, Arduino, and
OpenFrameworks. O’Reilly Media, 2009. ISBN 0596154143. 4.1.2

Donald Norman. The psychology of everyday things. Basic Books, New York, NY, USA,
1988. 2.1

Judith S. Olson, Gary M. Olson, Marianne Storrø sten, and Mark Carter. How a group-
editor changes the character of a design meeting as well as its outcome. In Proceedings
of the 1992 ACM conference on Computer-supported cooperative work - CSCW ’92,
pages 91–98, New York, New York, USA, dec 1992. ACM Press. ISBN 0897915429.
doi: 10.1145/143457.143466. 3.1.2

A Pabst and R Walk. Augmenting a rugged standard dj turntable with a tangible
interface for music browsing and playback manipulation. In Intelligent Environments,
2007. IE 07. 3rd IET International Conference on, pages 533–535, 2007. 3.6.3

E Pampalk. Islands of music analysis, organization, and visualization of music archives.
Journal of the Austrian Soc. for Artificial Intelligence, 22(4):20–23, 2003. 3.6.1, 3.21

E Pampalk, S Dixon, and G Widmer. Exploring music collections by browsing different
views. Computer Music Journal, 28(2):49–62, 2004. 3.6.1

Seymour Papert. The children’s machine: Rethinking school in the age of the computer.
Basic Books, 1993. ISBN 0465010636. 3.5.1

Seymour Papert and Idit Harel. Situating constructionism. Constructionism, pages
1–11, 1991. 3.5.1

Simon Penny, Jeffrey Smith, and Andre Bernhardt. Traces: Wireless full body tracking
in the cave. In ICAT’99, 1999. 2.3

Piaget and Jean. The Construction Of Reality In The Child. Routledge, 1999. ISBN
1136316949. 3.5.1

199

Bibliography

Jean Piaget. The origins of intelligence in the child. Routledge and Kegan Paul, London,
1953. 3.5.1

Andrei Popescu-Belis, Steve Renals, and Hervé Bourlard, editors. Machine Learning for
Multimodal Interaction, volume 4892 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-540-78154-7. doi: 10.1007/
978-3-540-78155-4. 5.5.1

Timothy Poston and Luis Serra. The virtual workbench: dextrous vr. pages 111–121,
aug 1994. 2.3

M Puckette. Pure data: another integrated computer music environment. Proceedings
of the Second Intercollege Computer Music Concerts, pages 37–41, 1996. 4.2.1

H.S. Raffle, A.J. Parkes, and H. Ishii. Topobo: a constructive assembly system with
kinetic memory. In Proceedings of the SIGCHI conference on Human factors in com-
puting systems, pages 647–654. ACM, 2004. 2.4

M. Resnick, F. Martin, R. Berg, R. Borovoy, V. Colella, K. Kramer, and B. Silverman.
Digital manipulatives: new toys to think with. In Proceedings of the SIGCHI confer-
ence on Human factors in computing systems, pages 281–287. ACM Press/Addison-
Wesley Publishing Co., 1998. 3.5.1

Mitchel Resnick. Technologies for lifelong kindergarten. Educational Technology Research
and Development, 46(4):43–55, 1998. ISSN 1042-1629. doi: 10.1007/BF02299672. 3.5.1

Yvonne Rogers and Tom Rodden. Configuring spaces and surfaces to support collabo-
rative interactions. In Public and Situated Displays, pages 45–79. Kluwer Publishers,
2004. 3.1.2

Yvonne Rogers, Youn-kyung Lim, William Hazlewood, and Paul Marshall. Equal oppor-
tunities: Do shareable interfaces promote more group participation than single user
displays? Human-Computer Interaction, 24(1):79–116, jan 2009. ISSN 0737-0024.
doi: 10.1080/07370020902739379. 5.2

David Sachs. Sensor fusion on android devices: A revolution in motion processing, 2010.
2.3

E. Sachs, A. Roberts, and D. Stoops. 3-draw: a tool for designing 3d shapes. IEEE
Computer Graphics and Applications, 11(6):18–26, nov 1991. ISSN 0272-1716. doi:
10.1109/38.103389. 2.3

Lori Scarlatos. An application of tangible interfaces in collaborative learning environ-
ments. In ACM SIGGRAPH 2002 conference abstracts and applications on - SIG-
GRAPH ’02, page 125, New York, New York, USA, jul 2002. ACM Press. ISBN
1581135254. doi: 10.1145/1242073.1242141. 3.5.1, 3.5.5

200

Bibliography

Robert W. Scheifler and Jim Gettys. The x window system. Software: Practice and
Experience, 20(S2):S5–S34, oct 1990. ISSN 00380644. doi: 10.1002/spe.4380201403.
5.4.1

Thomas Schlömer, Benjamin Poppinga, Niels Henze, and Susanne Boll. Gesture recogni-
tion with a wii controller. Proceedings of the 2nd international conference on Tangible
and embedded interaction - TEI ’08, page 11, 2008. doi: 10.1145/1347390.1347395.
2.3, 5.5.1, 5.5.1

Kjeld Schmidt and Liam Bannon. Taking cscw seriously. Computer Supported Co-
operative Work (CSCW), 1(1-2):7–40, mar 1992. ISSN 0925-9724. doi: 10.1007/
BF00752449. 5.2

Christophe Scholliers, Lode Hoste, Beat Signer, and Wolfgang De Meuter. Midas: a
declarative multi-touch interaction framework. In Proceedings of the fifth international
conference on Tangible, embedded, and embodied interaction, 2011. 5.4.4, 5.5.1, 5.5.3

Johannes Schöning, Peter Brandl, Florian Daiber, Florian Echtler, Otmar Hilliges,
Jonathan Hook, Markus Löchtefeld, Nima Motamedi, Laurence Muller, Patrick
Olivier, Tim Roth, and Ulrich von Zadow. Multi-touch surfaces: A technical guide.
Technical report, 2008. 2.4.1, 3.2, 3.4

J Schwarz and S Hudson. A framework for robust and flexible handling of inputs with un-
certainty. Proceedings of the 23nd annual ACM symposium on User interface software
and technology, 2010. 5.5.3

E Schweikardt and MD Gross. roblocks: a robotic construction kit for mathematics and
science education. . . . of the 8th international conference on . . . , 2006. 2.4

Stacey D. Scott, Karen D. Grant, and Regan L. Mandryk. System guidelines for co-
located, collaborative work on a tabletop display. ECSCW 2003, 2003. 5.3

Orit Shaer and Eva Hornecker. Tangible user interfaces: Past, present, and future
directions. Foundations and Trends in Human-Computer Interaction, 3(1-2):1–137,
jan 2010. ISSN 1551-3955. doi: 10.1561/1100000026. 2.1, 3.1.1, 3.1.3, 3.5, 5.2

C. E. Shannon. A mathematical theory of communication. ACM SIGMOBILE Mobile
Computing and Communications Review, 5(1):3, jan 2001. ISSN 15591662. doi: 10.
1145/584091.584093. 3.1.2

Ehud Sharlin, Benjamin Watson, Yoshifumi Kitamura, Fumio Kishino, and Yuichi Itoh.
On tangible user interfaces, humans and spatiality. Personal and Ubiquitous Comput-
ing, 8(5):338–346, jul 2004. ISSN 1617-4909. doi: 10.1007/s00779-004-0296-5. 5.4.1

Chia Shen, Neal Lesh, and Frédéric Vernier. Personal digital historian. interactions, 10
(2):15, mar 2003. ISSN 10725520. doi: 10.1145/637848.637856. 3.1.2, 3.1.2

201

Bibliography

B Shneiderman. Direct manipulation: A step beyond programming languages. Com-
puter, 16(8):57–69, 1983. ISSN 00189162. doi: 10.1109/MC.1983.1654471. 2.2.2

Jamie Shotton, Toby Sharp, Alex Kipman, Andrew Fitzgibbon, Mark Finocchio, Andrew
Blake, Mat Cook, and Richard Moore. Real-time human pose recognition in parts
from single depth images. Communications of the ACM, 56(1):116, jan 2013. ISSN
00010782. doi: 10.1145/2398356.2398381. 5.5.1

Danae Stanton, Tony Pridmore, Victor Bayon, Helen Neale, Ahmed Ghali, Steve Ben-
ford, Sue Cobb, Rob Ingram, Claire O’Malley, and John Wilson. Classroom col-
laboration in the design of tangible interfaces for storytelling. In Proceedings of the
SIGCHI conference on Human factors in computing systems - CHI ’01, pages 482–
489, New York, New York, USA, mar 2001. ACM Press. ISBN 1581133278. doi:
10.1145/365024.365322. 5.2

I Stavness, J Gluck, L Vilhan, and S Fels. The musictable: A map-based ubiquitous
system for social interaction with a digital music collection. Entertainment Computing-
ICEC 2005, pages 291–302, 2005. 3.6.1

M. Stefik, D. G. Bobrow, G. Foster, S. Lanning, and D. Tatar. Wysiwis revised: early
experiences with multiuser interfaces. ACM Transactions on Information Systems, 5
(2):147–167, apr 1987. ISSN 10468188. doi: 10.1145/27636.28056. 3.1.2

Anselm Strauss. Work and the division of labor. The Sociological Quarterly, 26(1):1–19,
mar 1985. ISSN 0038-0253. doi: 10.1111/j.1533-8525.1985.tb00212.x. 5.2

Chengzheng Sun, Steven Xia, David Sun, David Chen, Haifeng Shen, and Wentong Cai.
Transparent adaptation of single-user applications for multi-user real-time collabora-
tion. ACM Transactions on Computer-Human Interaction, 13(4):531–582, dec 2006.
ISSN 10730516. doi: 10.1145/1188816.1188821. 3.1.2

Ivan E. Sutherland. Sketch pad a man-machine graphical communication system. In
Proceedings of the SHARE design automation workshop on - DAC ’64, pages 6.329–
6.346, New York, New York, USA, jan 1964. ACM Press. doi: 10.1145/800265.810742.
2.3

Ivan E. Sutherland. A head-mounted three dimensional display. In Proceedings of the
December 9-11, 1968, fall joint computer conference, part I on - AFIPS ’68 (Fall,
part I), page 757, New York, New York, USA, dec 1968. ACM Press. doi: 10.1145/
1476589.1476686. 2.3

H Suzuki and Hiroshi Kato. Algoblock: a tangible programming language, a tool for
collaborative learning. Proceedings of 4th European Logo Conference, 1993. 2.4, 3.5.2

Michael Terry. Task blocks: tangible interfaces for creative exploration. In CHI ’01

202

Bibliography

extended abstracts on Human factors in computing systems - CHI ’01, page 463, New
York, New York, USA, mar 2001. ACM Press. ISBN 1581133405. doi: 10.1145/
634067.634334. 3.5.2

Philip Tuddenham, Ian Davies, and Peter Robinson. Websurface. In Proceedings of the
ACM International Conference on Interactive Tabletops and Surfaces - ITS ’09, page
181, New York, New York, USA, nov 2009. ACM Press. ISBN 9781605587332. doi:
10.1145/1731903.1731938. 5.3, 5.4.1

Brygg Ullmer and Hiroshi Ishii. Emerging frameworks for tangible user interfaces. IBM
Systems Journal, 39(3):915–931, 2000. ISSN 0018-8670. doi: 10.1147/sj.393.0915. 2.2,
2.4

Brygg Ullmer, Hiroshi Ishii, and Dylan Glas. mediablocks: physical containers, trans-
ports, and controls for online media. International Conference on Computer Graphics
and Interactive Techniques, page 379, 1998. 3.5.4

Brygg Ullmer, Hiroshi Ishii, and Robert J. K. Jacob. Token+constraint systems for
tangible interaction with digital information. ACM Transactions on Computer-Human
Interaction, 12(1):81–118, mar 2005. ISSN 10730516. doi: 10.1145/1057237.1057242.
3.1.3

John Underkoffler and Hiroshi Ishii. Urp: a luminous-tangible workbench for urban
planning and design. Conference on Human Factors in Computing Systems, page 386,
1999. 2.4, 2.3, 3.1.3

Himanshu Verma, Flaviu Roman, Silvia Magrelli, Patrick Jermann, and Pierre Dillen-
bourg. Complementarity of input devices to achieve knowledge sharing in meetings. In
Proceedings of the 2013 conference on Computer supported cooperative work - CSCW
’13, page 701, New York, New York, USA, 2013. ACM Press. ISBN 9781450313315.
doi: 10.1145/2441776.2441855. 5.3

Frédéric Vernier, Neal Lesh, and Chia Shen. Visualization techniques for circular tabletop
interfaces. In Proceedings of the Working Conference on Advanced Visual Interfaces
- AVI ’02, page 257, New York, New York, USA, may 2002. ACM Press. ISBN
1581135378. doi: 10.1145/1556262.1556305. 5.4.2

Mathieu Virbel, Thomas Hansen, and Oleksandr Lobunets. Kivy - a framework for rapid
creation of innovative user interfaces. In Marc Eibl, Maximilian AND Ritter, editor,
Workshop-Proceedings der Tagung Mensch & Computer 2011, pages 69–73, Chemnitz,
2011. Universitätsverlag Chemnitz. ISBN 978-3-941003-38-5. 5.5.1

Luc Vlaming, Jasper Smit, and Tobias Isenberg. Presenting using two-handed interaction
in open space. In 2008 3rd IEEE International Workshop on Horizontal Interactive

203

Bibliography

Human Computer Systems, pages 29–32. IEEE, oct 2008. ISBN 978-1-4244-2897-7.
doi: 10.1109/TABLETOP.2008.4660180. 2.3

Vasiliki Vouloutsi, Klaudia Grechuta, Stéphane Lallée, and Paul F M J Verschure. The
influence of behavioral complexity on robot perception. In Biomimetic and Biohybrid
Systems, pages 332–343. Springer, 2014. ISBN 3319094343. 4.1.5

Michel Waisvisz. The Hands: A Set of Remote MIDI-Controllers. Ann Arbor, MI:
MPublishing, University of Michigan Library, 1985. 2.3

I Ivo Weevers, RJW Wouter Sluis, van CHGJ Claudia Schijndel, S Siska Fitrianie,
L Lyuba Kolos-Mazuryk, and JBOS Jean-Bernard Martens. Read-it: A multi-modal
tangible interface for children who learn to read. In Entertainment Computing - ICEC
2004, chapter Springer, pages 226–234. Springer Press, 2004. 3.5.1, 3.5.5

Mark Weiser and Jonh Seely Brown. Designing calm technology. PowerGrid Journal,
pages 1–5, 1996. 2.4

Joel West and Michael Mace. Browsing as the killer app: Explaining the rapid suc-
cess of apple’s iphone. Telecommunications Policy, 34(5-6):270–286, jun 2010. ISSN
03085961. doi: 10.1016/j.telpol.2009.12.002. 2.1, 2.2.3

Jacob O. Wobbrock, Andrew D. Wilson, and Yang Li. Gestures without libraries, toolkits
or training: a $1 recognizer for user interface prototypes. In Proceedings of the 20th
annual ACM symposium on User interface software and technology - UIST ’07, page
159, New York, New York, USA, oct 2007. ACM Press. ISBN 9781595936792. doi:
10.1145/1294211.1294238. 5.4.4, 5.5.1, 5.5.1

Anna Xambó, Eva Hornecker, Paul Marshall, Sergi Jordà, Chris Dobbyn, and Robin
Laney. Let’s jam the reactable. ACM Transactions on Computer-Human Interaction,
20(6):1–34, dec 2013. ISSN 10730516. doi: 10.1145/2530541. 5.3

Oren Zuckerman, Saeed Arida, and Mitchel Resnick. Extending tangible interfaces for
education. In Proceedings of the SIGCHI conference on Human factors in computing
systems - CHI ’05, page 859, New York, New York, USA, apr 2005. ACM Press. ISBN
1581139985. doi: 10.1145/1054972.1055093. 2.4, 3.5.1

204

A List of Publications
References

[1] Daniel Gallardo, Carles F. Julià, and Sergi Jordà. Turtan: A tangible program-
ming language for creative exploration. In 3rd IEEE International Workshop on
Horizontal Interactive Human Computer Systems, 2008. TABLETOP 2008, pages
89–92. Ieee, IEEE, oct 2008.

[2] Daniel Gallardo, Carles F. Julià, and Sergi Jordà. Using mtcf for live prototyping
on tablet and tangible tabletop devices. In Proceedings of the 7th International
Conference on Tangible, Embedded and Embodied Interaction, pages 443–446. ACM,
2013.

[3] Emilia Gómez, Maarten Grachten, Alan Hanjalic, Jordi Janer, Sergi Jorda, Carles F.
Julià, Cynthia Liem, Agustin Martorell, Markus Schedl, and Gerhard Widmer.
Phenicx: Performances as highly enriched and interactive concert experiences. Open
access, 2013.

[4] Sergi Jordà, Seth E. Hunter, Pol Pla i Conesa, Daniel Gallardo, Daniel Leithinger,
Henry Kaufman, Carles F. Julià, and Martin Kaltenbrunner. Development strate-
gies for tangible interaction on horizontal surfaces. In Proceedings of the fourth
international conference on Tangible, embedded, and embodied interaction - TEI
’10, pages 369–372, New York, New York, USA, 2010. ACM Press.

[5] Sergi Jordà, Carles F. Julià, and Daniel Gallardo. Interactive surfaces and tangibles.
XRDS: Crossroads, The ACM Magazine for Students, 16(4):21–28, 2010.

[6] Carles F. Julià. Towards concurrent multi-tasking in shareable interfaces (in revi-
sion). Journal of Computer Supported Collaborative Work, (Special Issue "Collabo-
ration meets Interactive Surfaces - Walls, Tables, Tablets and Phones"), 2015.

[7] Carles F. Julià, Nicolas Earnshaw, and Sergi Jorda. Gestureagents: an agent-based
framework for concurrent multi-task multi-user interaction. In Proceedings of the 7th
International Conference on Tangible, Embedded and Embodied Interaction, pages
207–214. ACM, 2013.

[8] Carles F. Julià, Daniel Gallardo, and Sergi Jordà. Turtan: Un lenguaje de progra-
mación tangible para el aprendizaje. In AIPO, editor, Interacción 2009, Barcelona,
2009.

[9] Carles F. Julià, Daniel Gallardo, and Sergi Jordà. Mtcf: A framework for designing

205

and coding musical tabletop applications directly in pure data. In New Interfaces
for Musical Expression, 2011.

[10] Carles F. Julià and Sergi Jordà. Songexplorer: A tabletop application for exploring
large collections of songs. In ISMIR 2009, 2009.

206

B Tabletop applications in TEI, ITS, and
tabletop conferences

To assess the current situation of tabletop applications in research, we identified the ones
presented in conferences that usually focus on tangible and tabletop interaction: Tan-
gible and Embedded Interaction (TEI, 2007-2013), Tabletop (tabletop, 2008),
and Interactive Tables and Surfaces (ITS, 2009-2013). Only papers presenting
an application (and not only a test case for a new interaction technique or detection
system) are taken into account.

Conference Authors Application type Device or Technology
ITS09 Helmes et al. Interactive storytelling Microsoft surface
ITS09 Battocchi et al. puzzle game for collaboration/autist DiamondTouch
ITS09 Seifried et al. media controller DiamondTouch
ITS10 Sultanum et al. topological/reservoir visualization Microsoft surface
ITS10 Dang and André game implicit interaction Microsoft surface
ITS10 Selim and Maurer control center/utility companies Microsoft surface
ITS10 Correia et al. museum/collection browsing CCV
ITS11 Conardi et al. Electronics simulator Microsoft surface
ITS11 Freeman and Balakrishnan interaction design/ scripting Microsoft surface
ITS11 Mikulecky et al. Cloth-based map navigation SMART
ITS11 Chaboissier et al. multiuser game DiamondTouch
ITS11 Kim et al. think aloud/education CCV
ITS12 Chang et al. science divulgation PixelSense
ITS12 Schneider et al. Simulation of Climate Change Microsoft surface
ITS12 Valdes et al. scientific learning/children Microsoft surface
ITS12 Chua et al. Simulation of Evolutionary Processes PixelSense
ITS12 Shneider learning/collaboration/education Microsoft surface
ITS12 Tozser et al. collision reconstruction/police investigation Microsoft surface
ITS12 Bertrand et al. education/neuroscience reacTIVision
ITS12 Shneider et al. education/mathematics reacTIVision
ITS13 Domova et al. control/command/coordination Microsoft surface
ITS13 Matulic and Norrie pen and touch document editing DiamondTouch
ITS13 Augstein et al. Neuro-reabilitation PixelSense
ITS13 Lee and Lee control center/nuclear plant PixelSense

Table B.1: Tabletop application papers appeared in TEI, ITS, and tabletop confer-
ences

207

B Tabletop applications in TEI, ITS, and tabletop conferences

Conference Authors Application type Device or Technology
ITS13 Döweling et al map/crisis management PixelSense
ITS13 Wozniak et al. Maritime operations PixelSense
ITS13 Deb task assignment PixelSense
ITS13 Seyed et al. oil,gas exploration PixelSense

tabletop08 Wang and Maurer Agile meetings SMART
tabletop08 Rick and Rogers education DiamondTouch
tabletop08 Jiang et al. Multi-surface sharing (like dynamo) DiamondTouch
tabletop08 Gallardo et al. education/programming reacTIVision
tabletop08 Rick and Rogers education reacTIVision
TEI07 Jorda et al. musical instrument reacTIVision
TEI08 Jo sound performance instrument DiamondTouch
TEI08 Seifried et al. document organization (virtual/real) DiamondTouch
TEI08 Couture et al. science/geoscience reacTIVision
TEI09 Oppl and Stary concept mapping reacTIVision
TEI09 Pedersen and Hornbaek musical instrument reacTIVision
TEI09 Bartindale et al. media production reacTIVision
TEI09 Mazalek et al. storytelling reacTIVision
TEI10 Gallardo and Jordà music player/organizer reacTIVision
TEI10 Allison et al. visual game tesselation reacTIVision
TEI11 Xambó et al. musical instrument reacTIVision
TEI11 Clifton et al. sketching reacTIVision
TEI11 Canton telepresence CCV
TEI12 Salehi et al. think aloud/education CCV
TEI13 Dang and André game Microsoft surface
TEI13 Xu et al. science divulgation Microsoft surface
TEI13 Marco et al. Board-game creator reacTIVision
TEI13 Oh et al. education/programming reacTIVision

Table B.1: Tabletop application papers appeared in TEI, ITS, and tabletop confer-
ences

208

C TSI Applications

Year Name Game Music Tool Demo Fingers Objects Player ident. obj.
2009 TUIGoal ! !

2009 PlanetWar - NanoWar ! ! !

2009 Punk-o-table ! ! !

2009 Puckr ! ! ! ! !

2009 Oracle’s maze ! !

2009 TanQue ! ! !

2009 ReaCTAnoid ! ! !

2009 EBR - Beat the agents ! ! ! !

2009 effectable ! ! !

2010 80-table ! ! !

2010 Smash Table ! ! !

2010 projectwalk ! !

2010 autobahn ! ! ! !

2010 blockout ! !

2010 el meu gat favi ! ! ! !

2010 audioplayer ! ! ! !

2011 Tower Defense ! ! ! !

2011 Pulse Cubes ! ! !

2011 reactanks ! ! ! !

2011 logic gate simulator ! ! !

2011 formigues ! ! ! !

2011 daus mentiders ! ! !

2011 poquer ! ! !

2011 Rubik Musical ! ! !

2011 tablewars ! ! !

2011 menu ! ! !

2012 Ranas ! !

2012 Naus ! ! ! !

2012 Invasors del desktop ! ! !

2012 ninjafruit ! ! !

2012 Scrabble ! ! !

209

C TSI Applications

Year Name Game Music Tool Demo Fingers Objects Player ident. obj.
2012 pixels-laser ! !

2012 worms ! ! ! !

2012 reactcurling ! ! !

2012 interiorisme ! ! !

210

	Motivation
	Learning from mistakes
	A personal introduction to the thesis
	Contributions of this thesis
	Structure of this document

	Introduction
	The usefulness of the personal computer
	Interaction in personal computers
	WIMP
	Direct Manipulation
	Multi-Tasking and third-party applications
	Interaction Foci
	Post-Wimp GUI

	Gestural Interaction
	Tangible Interaction
	Tangible and tabletop

	Making tabletops useful

	Exploring tabletops' distinctive affordances
	Affordances of tabletops
	Simultaneous input
	Collaboration
	Physicality

	Existing tabletop applications
	The presented applications
	Hardware Setup
	TurTan, a tangible tabletop programming language for education
	TUI in learning
	Tangible programming languages
	TurTan interaction mechanics
	TurTan language, as an example of a Tangible Programming Language
	Is TurTan better than Logo in an education context?

	SongExplorer, a tabletop for song database exploration
	Visualization of music collections
	Feature Extraction
	Visualization
	Interface Evaluation
	Is map coherence important for music discovery?

	Tabletop Applications TSI
	Puckr
	TUIGoal
	Punk-o-Table
	Smash Table
	80-table
	Tower Defense
	Pulse Cubes
	Rubik Musical
	Naus
	Scrabble
	Ranas
	TSI applications' statistics

	Conclusions

	Empowering application developers
	ofxTableGestures: a framework for programmers
	The early stages: providing libraries (2009)
	Creating Gestures is the key (2010)
	Multi-user gestures (2011)
	Simplifying the API (2012)
	Discussion

	MTCF: a platform for sound and music tabletop creation
	A Reactable-like playground
	Allowing interface design

	Conclusions

	Multi-Application systems: GestureAgents
	Introduction
	Collaboration in shareable interfaces
	Multi-Tasking Shareable Interfaces: Current Situation and Related Research
	Approaches to Multi-Tasking
	Input sharing
	Area-based interaction
	Arbitrary Shape Area-Based Interaction
	Content/Semantics -based input sharing

	Approaches for Multi-Gesture Applications
	Gesture recognition and disambiguation in a single application
	Gesture Composition
	Single-Gesture Certainty and Real Time Disambiguation Strategies

	Implementation of GestureAgents Framework
	Elements of GestureAgents
	GestureAgents Protocol
	Restrictions on the Behaviors of Recognizers
	The GestureAgents System

	The GestureAgents Recognition Framework
	Recognizer composition
	Recognizer instances as Hypotheses
	Context polling
	Link with the application
	Provided Gestures

	A second iteration: Composition with 3rd Party Apps
	A working gesture composition example
	Two apps, two developers and composition: Not working
	Revisiting gesture composition
	Implementation
	Effects on Policies
	Portability
	Testing

	Applications and systems created with GestureAgents
	Original tests
	Example Applications
	Orchestra Conductor Gesture Identification

	GestureAgents Code
	Discussion on the framework
	Accessory agents
	Temporary Feedback
	Supporting Other Gesture Recognizing Techniques
	Security
	Efficiency
	Debugging and Testing
	Considerations on the second iteration
	Considerations on decoupled interfaces
	Future steps

	Conclusions

	Conclusions
	Contributions
	Future Work

	Bibliography
	List of publications
	Tabletop applications in TEI, ITS, and tabletop conferences
	TSI Applications

