
IMPROVING MUSIC RECOMMENDATIONS WITH A WEIGHTED
FACTORIZATION OF THE TAGGING ACTIVITY

Andreu Vall Marcin Skowron Peter Knees Markus Schedl
Department of Computational Perception, Johannes Kepler University, Linz, Austria

{andreu.vall, marcin.skowron, peter.knees, markus.schedl}@jku.at

ABSTRACT

Collaborative filtering systems for music recommendations
are often based on implicit feedback derived from listening
activity. Hybrid approaches further incorporate additional
sources of information in order to improve the quality of
the recommendations. In the context of a music streaming
service, we present a hybrid model based on matrix fac-
torization techniques that fuses the implicit feedback de-
rived from the users’ listening activity with the tags that
users have given to musical items. In contrast to exist-
ing work, we introduce a novel approach to exploit tags
by performing a weighted factorization of the tagging ac-
tivity. We evaluate the model for the task of artist recom-
mendation, using the expected percentile rank as metric,
extended with confidence intervals to enable the compar-
ison between models. Thus, our contribution is twofold:
(1) we introduce a novel model that uses tags to improve
music recommendations and (2) we extend the evaluation
methodology to compare the performance of different rec-
ommender systems.

1. INTRODUCTION AND RELATED WORK

We provide the motivation of our work together with a re-
view of the relevant related work, divided into three parts.
First, we introduce the types of user feedback under con-
sideration. Then, we present the family of models we use
to build recommender systems. Finally, we review the
evaluation methodology.

1.1 Explicit, Implicit and One-Class Feedback

The interactions between users and items provide a use-
ful source of data to produce recommendations [16]. It is
commonly accepted to distinguish between explicit feed-
back and implicit feedback, depending on whether the user
actively provides feedback about an item or this is tracked
from the user’s interaction with the system [1]. Examples
of explicit feedback are rating a movie, giving a ”like” to
a blog post, or tagging an artist, because the user actively

c© Andreu Vall, Marcin Skowron, Peter Knees, Markus
Schedl. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: Andreu Vall, Marcin
Skowron, Peter Knees, Markus Schedl. “Improving music recommen-
dations with a weighted factorization of the tagging activity”, 16th Inter-
national Society for Music Information Retrieval Conference, 2015.

provides an opinion. In contrast, the listening histories of
users in a music streaming service are an example of im-
plicit feedback.

The standard approach to make use of implicit feed-
back is to count or aggregate all the interactions for each
user-item pair [5, 7, 8], yielding a user-item-count table.
In structure, this is identical to an explicit feedback user-
item-rating table. We henceforth refer to such data struc-
ture as user-item interactions matrix, regardless of the type
of feedback (implicit or explicit).

In some cases a user-item interaction can express both
positive and negative opinions, in other cases it only re-
flects positive (or active) examples. Ratings in a 1 to 5
scale conventionally range from strongly disliking an item
to strongly liking it. However, tracking whether a user vis-
ited or not a website, only provides a binary feedback de-
scribing action or inaction. Binary feedback is often re-
ferred to as one-class feedback [12, 15, 17], and examples
of it can be found both in explicit and in implicit feed-
back. For example, a user-item interactions matrix (be it
from explicit or implicit feedback) contains intrinsically a
source of one-class feedback, revealing which user-item
pairs were observed and which not.

Inaction must not be confused with a negative opinion,
because a user may not have interacted with an item for a
variety of reasons, not necessarily because of lack of inter-
est. Social tags also exhibit this property, and treating this
correctly will be a key point of the presented model.

1.2 Matrix Factorization for Collaborative Filtering

Collaborative filtering is a widely used recommendation
method which aims at recommending the most relevant
items to a user based on relations learned from previous in-
teractions between users and items [16]. The factorization
of the user-item interactions matrix into latent factors ma-
trices is a well established technique to implement collab-
orative recommender systems, both for explicit feedback
and implicit feedback datasets [7, 10, 15]. Compared to
other methods, it has the advantage of uncovering latent
data structures by solving an optimization problem, instead
of using problem-specific and manually-designed features.

Specific collaborative systems for implicit feedback data
based on matrix factorization techniques are presented in
[7, 15]. The key technique is to use appropriate weights in
the low-rank approximation of the user-item interactions
matrix. More specifically, even if the weighting schemes
are different, both [7, 15] assign higher confidence to the

observed user-item pairs and lower (but still positive) con-
fidence to the unobserved user-item pairs. This is impor-
tant to handle the uncertainty derived from the one-class
property described before. We will insist on this point later,
because our improved treatment of the tagging activity will
rest on the same principle.

1.3 Hybrid Recommender Systems

In collaborative filtering implementations based on matrix
factorization techniques, hybrid models can be based on
the simultaneous factorization of the user-item interactions
matrix, together with other data for users and items [5,13].
The motivation for that is that latent factors summarizing
user and item properties should be reinforced, or better de-
scribed, if other data sources related to the same users and
items are involved in the optimization problem.

The tags that users assign to musical items –or other
forms of textual data, like user profiles or genre annota-
tions for the items– are an obvious example of potentially
useful additional information. In this line, the research pre-
sented in [5] is a valid starting point, dealing with implicit
feedback data and hybridized with user and item profiles,
built on the basis of tf-idf weights calculated for each user,
each item and each considered word in a dictionary.

Tagging information is an explicit source of feedback
(because users actively provide it) that exhibits, at the same
time, the one-class property described before; the tags as-
signed to musical items are only positive examples (even
if the meaning of a tag is semantically negative). A par-
ticular tag may not have been applied to a musical item,
but this does not imply that the tag is not suited to describe
that musical item. This property of social tags is also re-
ferred to as weak labeling [18]. It is reasonable to assume
though, that the more often a tag has been applied to a mu-
sical item, the more it should be trusted. Similarly, if a user
applies a tag very often, it may be assumed that the tag is
to some extent relevant for her to describe musical items.
To address the uncertainty that arises from this wide range
of possibilities, we propose to exploit the tagging activity
with a weighted matrix factorization scheme similar to the
one applied for collaborative filtering in implicit feedback
datasets. Observed tags can be given higher confidence.
Unobserved tags can be given lower confidence, but still
positive, so that they are not ignored in the recommenda-
tion system.

1.4 Evaluation of Recommender Systems

The Netflix Prize [3] has motivated an important progress
in the domain of collaborative filtering, but probably due to
the specific approach considered in the challenge, research
has centered on attaining maximum levels of accuracy in
the prediction of ratings. However, improvements in pre-
dictive accuracy do not always translate to improved user
satisfaction [14].

To make the evaluation task more similar to a real use
case (although still in an off-line experiment), [9] evalu-
ates different recommender systems on the basis of issued
ranked lists of recommendations. A recommender able to

rank first the relevant items should be considered better
than a recommender that is not able to do so. An exten-
sion of this evaluation methodology to deal with implicit
feedback datasets is proposed in [7] and applied in [8, 12].
It consists in a central tendency measure, called expected
percentile rank, assessing how good is the recommender at
identifying relevant items.

The expected percentile rank is a valid metric to mea-
sure the average behavior of a single recommender system,
but in order to compare the performance of different rec-
ommender systems, considering only mean values can be
inaccurate. We propose to use bootstrapping techniques
to examine the distribution of the expected percentile rank
and test for significant differences between models.

2. METHODOLOGY

This work is framed in the context of music streaming ser-
vices in which users interact with musical items, mainly
listening to music, but also through the free input of text
describing them. We focus on the task of artist recom-
mendations. The listening data is aggregated at the artist
level, obtaining a user-artist-count matrix of implicit feed-
back. The tagging activity yields a user-artist-tag matrix of
one-class feedback, processed to obtain: a user-tag-count
matrix, describing how many times a user applied a tag,
and an artist-tag-count matrix, describing how many times
a tag was applied to an artist. The proposed model is
actually flexible regarding the tagging activity data. In
our experiments, we successfully use a collection of top
used tags (not a complete list of all the used tags) together
with weights describing the tag relevance (instead of actual
counts).

2.1 Recommender System Models

We compare three recommender systems. The first is a
standard collaborative filtering model for implicit feedback
data. The second is a hybrid model incorporating textual
data, that we modify for the specific task of using tags.
Finally, we introduce a novel model, able to improve the
quality of the recommendations through a weighted fac-
torization of the tagging activity.

2.1.1 Implicit Feedback Matrix Factorization (MF)

We use the approach described in [7] to perform collabo-
rative filtering on implicit feedback data. It consists in a
weighted low-rank approximation of the user-artist-count
matrix, adjusting the confidence of each user-artist pair as a
function of the count. Given a system with N users and M
artists, the counts for each user-artist pair are tabulated in a
matrix R ∈ NN×M , where users are stored row-wise and
artists column-wise. A binary matrix R̃ is defined, such
that for each user u and each artist a

R̃ua =

{
1 if Rua > 0

0 if Rua = 0
, (1)

and the following weight function is defined as

w(η, x) = 1 + η log(1 + x). (2)

Other weight functions can be defined and may better suit
each specific problem and distribution of the data. We
choose a logarithmic relation (instead of the also common
linear relation used in [5, 7, 8]) to counteract the long-tail
distribution of the data, where a majority of users have a
small percentage of the total observed interactions. How-
ever, the detailed optimization of this function is not within
the scope of this work.

Finally, the matrix factorization consists in finding two
D-rank matrices P ∈ RN×D and Q ∈ RM×D (rows are
latent features for users and artists respectively) minimiz-
ing the following cost function:

JMF (P,Q) =
∑
ua∈R

w(α,Rua)
(
R̃ua − PuQ

T
a

)2
+ λ

(
‖P‖2F + ‖Q‖2F

)
.

(3)

Matrix R̃ is reconstructed using P and Q. R̃ua is the en-
try of R̃ corresponding to user u and artist a. Pu is the
row of P corresponding to user u, and Qa is the row of
Q corresponding to artist a. The squared reconstruction
error is weighted using a function of the actual counts in
Rua according to equation (2) and it is summed over all
the user-artist pairs. 1 The parameter α contributes to the
weight function and is determined by grid search. A reg-
ularization term involving the Frobenius norm of P and Q
is added to prevent the model from over-fitting. The regu-
larization parameter λ is also determined by grid search.

2.1.2 Implicit Feedback Matrix Factorization with
Tagging Activity (TMF)

Equation (3) is extended in [5] to incorporate textual infor-
mation. We present a modification of this model to specif-
ically deal with tags. Given a system where T tags have
been used, the counts for each user-tag pair are stored in a
matrix TU ∈ NN×T , where rows correspond to users and
columns correspond to tags. The counts for each artist-tag
pair are stored in a matrix TA ∈ NM×T , where rows corre-
spond to artists and columns correspond to tags. The mod-
ified model factorizes together R̃, TU and TA into three
D-rank matrices P ∈ RN×D, Q ∈ RM×D, X ∈ RT×D

(rows are latent features for users, artists and tags respec-
tively) minimizing the following cost function:

JTMF (P,Q,X) =
∑
ua∈R

w(α,Rua)
(
R̃ua − PuQ

T
a

)2
+ µ1

∑
ut∈TU

(
TU
ut − PuX

T
t

)2
+ µ2

∑
at∈TA

(
TA
at −QaX

T
t

)2
+ λ
(
‖P‖2F + ‖Q‖2F + ‖X‖2F

)
.

(4)

The first term is identical as in (3). The second and third
terms account for the contribution of tags. Xt is the row

1 As described in [7], this includes the zero entries of R as well.

of X corresponding to tag t. Matrices TU and TA are re-
constructed using P,Q andX , and the squared reconstruc-
tion errors are summed over all user-tag pairs and artist-tag
pairs. The parameters µ1, µ2 account for the contribution
of each term to the cost function, and are determined by
grid search. The regularization term is analogous as in (3).

This formulation modifies the one described in [5], in
that it factorizes TU and TA using a single shared tags’
factor matrix X , instead of two dedicated factor matri-
ces. The tagging activity consists of user-artist-tag obser-
vations. Even if we use separated user-tag-count and artist-
tag-count matrices as inputs for the model, the tags must be
factorized in the same space of latent features.

This model factorizes the user-tag and artist-tag raw
counts. If, for example, an artist-tag pair has never been
observed, the model will try to fit a value of 0 counts for it.
This seems an unsuited model, because we know that a tag
that has not been applied may still be relevant.

2.1.3 Implicit Feedback Matrix Factorization with
Weighted Tagging Activity (WTMF)

We introduce a novel approach to improve the hybridiza-
tion with tagging activity, by using a weighted factoriza-
tion scheme similar to the one used for implicit feedback
data. The observed user-tag and artist-tag pairs are given
high confidence and therefore have a higher contribution
to the cost function. The unobserved user-tag and artist-
tag pairs are given low confidence. They become less rel-
evant in the cost function, and at the same time the model
has more freedom to fit them. As the results in Section 3.3
demonstrate, this is a better approach to model the weak
labeling property of social tags.

We define binary matrices T̃U and T̃A, such that for
each user u, each artist a and each tag t

T̃U
ut =

{
1 if TU

ut > 0

0 if TU
ut = 0

T̃A
at =

{
1 if TA

at > 0

0 if TA
at = 0

.

(5)

We factorize together R̃, T̃U and T̃A into three D-rank
matrices P ∈ RN×D, Q ∈ RM×D and X ∈ RT×D (rows
are latent features for users, artists and tags respectively)
minimizing the following cost function:

JWTMF (P,Q,X) =
∑
ua∈R

w(α,Rua)
(
R̃ua − PuQ

T
a

)2
+ µ1

∑
ut∈TU

w(β, TU
ut)
(
T̃U
ut − PuX

T
t

)2
+ µ2

∑
at∈TA

w(γ, TA
at)
(
T̃A
at −QaX

T
t

)2
+ λ
(
‖P‖2F + ‖Q‖2F + ‖X‖2F

)
.

(6)

The equation is similar to (4), but now all the terms in-
volve a weighted factorization. Note that the second and

third terms have specific weight coefficients β and γ, de-
termined by grid search.

2.2 Parameter Estimation

Alternating Least Squares (ALS) is usually the preferred
method to minimize the objective functions of models based
on matrix factorization [2, 5–8, 15, 19]. ALS is an iterative
method, where subsequently all but one of the factor ma-
trices are kept fixed. This results in quadratic functions
that approximate the original one. At each step, the cost
value is expected to move closer to a local minimum and
the process is repeated until convergence. Since the ap-
proximated functions are quadratic, the exact solution for
the factors can be computed in closed form.

For each of the presented models, we provide the exact
solution for the factors of each user u stored in Pu, each
artist a stored in Qa and each tag t stored in Xt. We in-
troduce some additional notation. Rru , Rca , TU

ra , TU
ct , TA

ra ,
TA
ct refer to the uth, ath, tth row or column (r, c) of the cor-

responding matrix (R, TU , TA). 2 We also need to define
the following matrices:

• W ru
R ∈ RM×M is a diagonal matrix with the weights

computed for the uth row of R in the diagonal

• W ca
R ∈ RN×N is a diagonal matrix with the weights

computed for the ath column of R in the diagonal

• W ru
TU ∈ RT×T is a diagonal matrix with the weights

computed for the uth row of TU in the diagonal

• W ct
TU ∈ RN×N is a diagonal matrix with the weights

computed for the tth column of TU in the diagonal

• W ra
TA ∈ RT×T is a diagonal matrix with the weights

computed for the ath row of TA in the diagonal

• W ct
TA ∈ RM×M is a diagonal matrix with the weights

computed for the tth column of TA in the diagonal

2.2.1 Solution for JMF

For each user u and artist a, the latent factors are given by{
Pu =

(
QTW ru

R Q+ λI
)−1(

QTW ru
R RT

ru

)
Qa =

(
PTW ca

R P + λI
)−1(

PTW ca
R RT

ca

) (7)

2.2.2 Solution for JTMF

For each user u, artist a and tag t, the latent factors are
given by

Pu =
(
QTW ru

R Q+µ1X
TX + λI

)−1(
QTW ru

R RT
ru + µ1X

TTUT
ra

)
Qa =

(
PTW ca

R P+µ2X
TX + λI

)−1(
PTW ca

R RT
ca + µ2X

TTAT
ra

)
Xt =

(
µ1P

TP+µ2Q
TQ+ λ

)−1(
µ1P

TTUT
ct + µ2Q

TTAT
ct

)
(8)

2 TU and TA may be further transposed, reading TUT and TAT .

2.2.3 Solution for JWTMF

For each user u, artist a and tag t, the latent factors are
given by

Pu =
(
QTW ru

R Q+µ1X
TW ru

TUX + λI
)−1(

QTW ru
R RT

ru + µ1X
TW ru

TUT
UT
ra

)
Qa =

(
PTW ca

R P+µ2X
TW ra

TAX + λI
)−1(

PTW ca
R RT

ca + µ2X
TW ra

TAT
AT
ra

)
Xt =

(
µ1P

TW ct
TUP + µ2Q

TW ct
TAQ+ λ

)−1(
µ1P

TW ct
TUT

UT
ct + µ2Q

TW ct
TAT

AT
ct

)
(9)

2.3 Producing Recommendations

The technique employed to produce recommendations is
the same for all the models. Once the factor matrices P,Q
and X are learned, the user-artist preferences are predicted
as Z = PQT . Note that the tags’ factor matrix X is not
directly involved in the prediction, although it contributed
to a better estimation of P and Q. The new matrix Z is
expected to be a reconstruction of R̃ for the observed user-
artist pairs. For unobserved entries, Z is expected to reveal
potential preferences on the basis of the learned user and
artist factors. The closer a predicted user-artist preference
is to 1, the more confidence we have that it corresponds to
an interesting artist for the user. For each user u, a recom-
mendation list is prepared showing the artists with higher
predicted preference values in Zu.

3. EXPERIMENTAL STUDY

3.1 Dataset

We compare the different models on a dataset of Last.fm
listening histories, top tags used by users and top tags ap-
plied to artists, collected through the Last.fm API. 3 The
combination of the standard Taste Profile Subset 4 with the
Last.fm tags dataset 5 would seem a preferable choice, but
the absence of users’ tagging activity makes it unsuited.

The dataset is built as a stable subset of a running crawl
of Last.fm listening events. The original crawl includes
only users with non-empty country information, non-empty
gender information and a value in the age field between 10
and 80 years, although such filtering is actually not needed.
There is no constraint on the minimum or maximum num-
ber of artists a user has listened to. However, we only in-
clude users such that at least 95% of their listened artists
have a valid MusicBrainz 6 identifier, which is required to
accurately crawl the artists’ tagging activity. This does not
bias the dataset towards popular artists, because the Mu-
sicBrainz is an open and collaborative platform, includ-
ing a wide variety of artists. The users’ tagging activity
is fetched with the Last.fm user names.

3 http://www.last.fm/api
4 http://labrosa.ee.columbia.edu/millionsong/tasteprofile
5 http://labrosa.ee.columbia.edu/millionsong/lastfm
6 https://musicbrainz.org/

listened artists # users

1− 10 64

11− 20 84

21− 30 122

31− 40 77

41− 50 96

50− 100 466

101− 2, 332 1, 993

total 2, 902

Table 1: Distribution of users per number
of listened artists.

The dataset includes 21, 852, 559 listening events, re-
lating to 2, 902 users and 71, 223 artists, yielding 687, 833
non-zero user-artist-count entries. This corresponds to a
matrix density of roughly 0.3%. Table 1 shows the distri-
bution of users as a function of the number of artists they
listened to.

The top tags for each user (if any) are provided together
with a count variable describing how many times the user
applied it. The top tags applied to an artist (if any) are pro-
vided together with a percentage relative to the most fre-
quently applied tag [11]. Because the API functions only
return the top tags, we only observe a partial set of the tag-
ging activity. In addition, although the user is presented
with previously used tags, she can always input free text.
To overcome these limitations, we perform regularization
and simplification operations to the tag strings, namely: re-
placements of genre abbreviations with their extended ver-
sion, spelling corrections, removal of non-alphanumeric
characters and mapping of different spelling variants to a
unique tag string, resulting in a unified set of tokens. After
this process is applied to the fetched tags, we are left with
630 unique tags for 600 users and 12, 902 unique tags for
67, 332 artists, among which 494 unique tags are identified
as identical between the user and the artist list. Note that
tags were found for most of the artists, but only for 20% of
the users. Probably, only a small subset of active users use
the tagging functionality.

The whole matrix of user-artist counts is used, although
not all users or artists have related tagging activity. Tags
are a complement whenever they are available.

3.2 Evaluation Methodology

The most reliable evaluation method for a recommender
system is an actual large-scale on-line experiment, where
real users interact with the system [16]. This requires a
complex infrastructure which, unfortunately, is not within
the scope of this work. Since we only have access to his-
torical data, we can not measure how new recommenda-
tions would be perceived by the users. Furthermore, in
contrast to explicit feedback applications, accuracy met-
rics for predicted ratings are not meaningful for implicit
feedback. Therefore, we adopt the evaluation approach
proposed in [9] and adapted in [7] to deal with implicit

feedback datasets in a recall-oriented setting and we addi-
tionally propose an extension to it.

The observed user-artist pairs are split into training and
test sets to perform 5-fold cross validation, letting each
user have approximately 80% of the listened artists in the
training set and 20% in the test set. For each user-artist
pair u, a assigned to the test set, a random list of artists
(not including a) is drawn. The list is then ranked accord-
ing to the preferences of user u, learned from the training
set as explained in Section 2. Finally, a is inserted in the
sorted list, and its percentile rank within the list is stored
as rankua. 7 If a is ranked among the top positions of the
list, then its percentile rank is close to 0%. If it is ranked
in last positions, then its percentile rank is close to 100%.

After this process is done over all the splits, rankua is
known for all the observed user-artist pairs in the dataset.
Then, following [5, 7, 8], the expected percentile rank is
defined as the weighted average of rankua with weights
given by the user-artist counts:

rank =

∑
ua∈R

Ruarankua∑
ua∈R

Rua

. (10)

Correctly ranking a highly relevant artist is more impor-
tant than correctly ranking a less relevant artist. Likewise,
failing to recommend a highly relevant artist is worse than
failing to recommend a less relevant one. Values of rank
close to 0% indicate that the recommender is able to cor-
rectly rank the relevant artists. Producing ranked lists uni-
formly at random results in an expected percentile rank of
50%. Ranking all the relevant items in the last position of
the list results in an expected percentile rank of 100%.

We extend the evaluation methodology by building con-
fidence intervals of rank. This allow us to test for signif-
icant differences in the performance of models. We use
basic bootstrap confidence intervals, based on the boot-
strap distribution of the expected percentile rank (see [4]).
For all the observed user-artist pairs in the dataset, random
samples with replacement and with the same size as the
dataset are drawn. For each sample of user-artist pairs, the
expected percentile rank is computed. We repeat this step
1, 000 times to obtain the bootstrap distribution of rank.
We then build 95% confidence intervals of rank using the
basic bootstrap scheme described in [4].

3.3 Model Comparison

The models are evaluated and compared for a varying num-
ber of latent factors D, and for a varying number of train-
ing iterations. On the one hand, we fix the number of itera-
tions to 10 and evaluate the models with 5, 10, 20, 50, 100
latent factors. On the other hand, we fix the number of
factors to 10 and evaluate the models for 5, 10, 20, 50, 100
training iterations. We choose 10 factors and 10 training

7 Lists of any length may be prepared, and the percentile rank provides
a unified scale. We use lists of 100 artists in our experiments. According
to our experience, longer lists do not yield significant differences.

MF

TMF
WTMF

1.5%

2.0%

2.5%

3.0%

3.5%

5 10 20 50 100
Number of Factors

E
x
p

e
c
te

d
 P

e
rc

e
n

ti
le

 R
a

n
k

Figure 1: Model comparison for different number of latent
factors. The dots correspond to rank and the error bars
display 95% basic bootstrap confidence intervals. The dif-
ferent models are dodged to avoid overlapping. The top
and center lines correspond to the baseline models. The
lowest corresponds to the presented model.

iterations as a basic setting, because they balance well per-
formance and computational requirements.

For each model and each combination of factors and it-
erations, we tune the parameters α, β, γ, µ1, µ2 and λ by
grid search. We choose the set of values that provides low-
est expected percentile rank, computed by 5-fold cross val-
idation as described in Section 3.2. Figures 1 and 2 show
the results for different number of factors and iterations re-
spectively.

Note that all models, including the plain matrix factor-
ization model, provide very good results, with values of
expected percentile rank under 4%. This implies that, on
average, the models are able to rank relevant artists among
the top 4 positions of a list of 100 random artists.

The performance of TMF and WTMF improves signif-
icantly when more latent factors are used (see Figure 1).
The presented model outperforms the baselines, although
for 100 factors the difference between TMF and WTMF
is small. We examine this case. We compute a 95% ba-
sic bootstrap confidence interval for the difference of rank
and it does not include 0. We conclude that the difference
in performance is still significant. For lower number of
factors the differences between the presented model and
the baselines are remarkable. Good performance at inex-
pensive computational requirements is a crucial property,
especially for large-scale implementations.

Increasing the number of training iterations results in
smaller improvements (see Figure 2). Our model clearly
outperforms the baselines in this set of experiments too,
with a difference of nearly 1% in expected percentile rank.
With the basic setting of 10 factors, TMF can not fully ex-
ploit the tagging activity and performs comparably to MF.
For experiments with 20 or more training iterations they
perform exactly as well, because the grid search process
finds that discarding the tagging activity yields best results.

MF

TMF

WTMF

2.1%

2.4%

2.7%

3.0%

3.3%

5 10 20 50 100
Number of Iterations

E
x
p

e
c
te

d
 P

e
rc

e
n

ti
le

 R
a

n
k

Figure 2: Model comparison for different number of train-
ing iterations. The dots correspond to rank and the error
bars display 95% basic bootstrap confidence intervals. The
different models are dodged to avoid overlapping. The top
lines correspond to the baseline models. The lowest corre-
sponds to the presented model.

TMF performs slightly better than MF with 5 training iter-
ations. The performance of TMF does not improve mono-
tonically with more training iterations, although the model
is not over-fitting. This is because after 5 iterations the
cost function of TMF reaches a flat region close to a local
minimum, resulting in small performance variations.

4. CONCLUSIONS AND FURTHER RESEARCH

In this paper we presented a novel model to incorporate
tagging activity into implicit feedback recommender sys-
tems. Our approach proves to work better than previous
hybrid models, based on experiments conducted with real
data from Last.fm, a well-known music streaming service.
We extended the common evaluation methodology com-
puting basic bootstrap confidence intervals for the expected
percentile rank. This allows us to test for significant differ-
ences in the performance of models.

As future work, we will evaluate the robustness of the
presented model for different recommendation tasks. We
are particularly interested in the task of song recommenda-
tions, but we will also experiment in fields other than mu-
sic, like movies or websites. Another interesting question
is the effect of the size and connectedness of the tagging
data on the final quality of the recommendations. We will
investigate how rich and linked together needs to be the
tagging activity in order to enhance the recommendations.
This could provide indications of when can the model be
successfully utilized, or which kind of processing of the
tag strings is required to make the tagging activity helpful.

5. ACKNOWLEDGMENTS

This research is supported by the Austrian Science Fund
(FWF) under project no. P25655 and the EU FP7 through
projects 601166 (PHENICX) and 610591 (GiantSteps).

6. REFERENCES

[1] Gediminas Adomavicius and Alexander Tuzhilin. To-
ward the next generation of recommender systems: a
survey of the state-of-the-art and possible extensions.
IEEE Transactions on Knowledge and Data Engineer-
ing, 17(6):734–749, June 2005.

[2] Robert M. Bell and Yehuda Koren. Scalable collabo-
rative filtering with jointly derived neighborhood inter-
polation weights. In Proc. ICDM, pages 43–52. IEEE,
2007.

[3] James Bennett and Stan Lanning. The netflix prize. In
Proc. KDDCup, page 35, 2007.

[4] Thomas J. DiCiccio and Bradley Efron. Bootstrap con-
fidence intervals. Statistical science, pages 189–212,
1996.

[5] Yi Fang and Luo Si. Matrix co-factorization for recom-
mendation with rich side information and implicit feed-
back. In Proc. HETREC, pages 65–69. ACM, 2011.

[6] K. Ruben Gabriel and S. Zamir. Lower Rank Ap-
proximation of Matrices by Least Squares with Any
Choice of Weights. Technometrics, 21(4):489, Novem-
ber 1979.

[7] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collab-
orative filtering for implicit feedback datasets. In Proc.
ICDM, pages 263–272. IEEE, 2008.

[8] Christopher C. Johnson. Logistic Matrix Factorization
for Implicit Feedback Data. 2014.

[9] Yehuda Koren. Factorization meets the neighborhood:
a multifaceted collaborative filtering model. In Proc.
SIGKDD, pages 426–434. ACM, 2008.

[10] Yehuda Koren, Robert Bell, and Chris Volinsky. Ma-
trix factorization techniques for recommender systems.
Computer, 42(8):30–37, 2009.

[11] M. Levy and M. Sandler. Music information retrieval
using social tags and audio. IEEE Transactions on Mul-
timedia, 11(3):383–395, April 2009.

[12] Yanen Li, Jia Hu, ChengXiang Zhai, and Ye Chen. Im-
proving one-class collaborative filtering by incorporat-
ing rich user information. In Proc. CIKM, pages 959–
968. ACM, 2010.

[13] Hao Ma, Tom Chao Zhou, Michael R. Lyu, and Irwin
King. Improving recommender systems by incorporat-
ing social contextual information. ACM Transactions
on Information Systems, 29(2):1–23, April 2011.

[14] Sean M. McNee, John Riedl, and Joseph A. Konstan.
Being accurate is not enough: How accuracy metrics
have hurt recommender systems. In Proc. CHI’06 Ex-
tended Abstracts, pages 1097–1101. ACM, 2006.

[15] Rong Pan, Yunhong Zhou, Bin Cao, Nathan Nan Liu,
Rajan Lukose, Martin Scholz, and Qiang Yang. One-
class collaborative filtering. In Proc. ICDM, pages
502–511. IEEE, 2008.

[16] Francesco Ricci, Lior Rokach, Bracha Shapira, and
Paul B Kantor, editors. Recommender systems hand-
book. Springer, 2011.

[17] Vikas Sindhwani, Serhat S. Bucak, Jianying Hu, and
Aleksandra Mojsilovic. One-class matrix completion
with low-density factorizations. In Proc. ICDM, pages
1055–1060. IEEE, 2010.

[18] Douglas Turnbull, Luke Barrington, and Gert Lanck-
riet. Five approaches to collecting tags for music. In
Proc. ISMIR, volume 8, pages 225–230, 2008.

[19] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber,
and Rong Pan. Large-scale parallel collaborative filter-
ing for the netflix prize. In Algorithmic Aspects in In-
formation and Management, pages 337–348. Springer,
2008.

